These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. VEZF1-guanine quadruplex DNA interaction regulates alternative polyadenylation and detyrosinase activity of VASH1. Li L; Williams P; Gao Z; Wang Y Nucleic Acids Res; 2020 Dec; 48(21):11994-12003. PubMed ID: 33231681 [TBL] [Abstract][Full Text] [Related]
28. Isolation of a small vasohibin-binding protein (SVBP) and its role in vasohibin secretion. Suzuki Y; Kobayashi M; Miyashita H; Ohta H; Sonoda H; Sato Y J Cell Sci; 2010 Sep; 123(Pt 18):3094-101. PubMed ID: 20736312 [TBL] [Abstract][Full Text] [Related]
29. The Tubulin Detyrosination Cycle: Function and Enzymes. Nieuwenhuis J; Brummelkamp TR Trends Cell Biol; 2019 Jan; 29(1):80-92. PubMed ID: 30213517 [TBL] [Abstract][Full Text] [Related]
30. Vasohibin 1 selectively regulates secondary sprouting and lymphangiogenesis in the zebrafish trunk. de Oliveira MB; Meier K; Jung S; Bartels-Klein E; Coxam B; Geudens I; Szymborska A; Skoczylas R; Fechner I; Koltowska K; Gerhardt H Development; 2021 Feb; 148(4):. PubMed ID: 33547133 [TBL] [Abstract][Full Text] [Related]
31. Domain architecture of vasohibins required for their chaperone-dependent unconventional extracellular release. Kadonosono T; Yimchuen W; Tsubaki T; Shiozawa T; Suzuki Y; Kuchimaru T; Sato Y; Kizaka-Kondoh S Protein Sci; 2017 Mar; 26(3):452-463. PubMed ID: 27879017 [TBL] [Abstract][Full Text] [Related]
32. Trans-cinnamaldehyde suppresses microtubule detyrosination and alleviates cardiac hypertrophy. Tian J; Shan XL; Wang SN; Chen HH; Zhao P; Qian DD; Xu M; Guo W; Zhang C; Lu R Eur J Pharmacol; 2022 Jan; 914():174687. PubMed ID: 34883072 [TBL] [Abstract][Full Text] [Related]
33. A structural analysis of the interaction between ncd tail and tubulin protofilaments. Wendt T; Karabay A; Krebs A; Gross H; Walker R; Hoenger A J Mol Biol; 2003 Oct; 333(3):541-52. PubMed ID: 14556743 [TBL] [Abstract][Full Text] [Related]
34. Near-atomic cryo-EM structure of PRC1 bound to the microtubule. Kellogg EH; Howes S; Ti SC; Ramírez-Aportela E; Kapoor TM; Chacón P; Nogales E Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9430-9. PubMed ID: 27493215 [TBL] [Abstract][Full Text] [Related]
35. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. des Georges A; Katsuki M; Drummond DR; Osei M; Cross RA; Amos LA Nat Struct Mol Biol; 2008 Oct; 15(10):1102-8. PubMed ID: 18794845 [TBL] [Abstract][Full Text] [Related]
36. Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin. Chrétien D; Flyvbjerg H; Fuller SD Eur Biophys J; 1998; 27(5):490-500. PubMed ID: 9760730 [TBL] [Abstract][Full Text] [Related]
37. Cryo-EM of α-tubulin isotype-containing microtubules revealed a contracted structure of α4A/β2A microtubules. Diao L; Zheng W; Zhao Q; Liu M; Fu Z; Zhang X; Bao L; Cong Y Acta Biochim Biophys Sin (Shanghai); 2023 Oct; 55(10):1551-1560. PubMed ID: 37439022 [TBL] [Abstract][Full Text] [Related]
38. A new protocol to accurately determine microtubule lattice seam location. Zhang R; Nogales E J Struct Biol; 2015 Nov; 192(2):245-54. PubMed ID: 26424086 [TBL] [Abstract][Full Text] [Related]
39. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules. Andreu JM; Bordas J; Diaz JF; García de Ancos J; Gil R; Medrano FJ; Nogales E; Pantos E; Towns-Andrews E J Mol Biol; 1992 Jul; 226(1):169-84. PubMed ID: 1352357 [TBL] [Abstract][Full Text] [Related]
40. Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Eiserich JP; Estévez AG; Bamberg TV; Ye YZ; Chumley PH; Beckman JS; Freeman BA Proc Natl Acad Sci U S A; 1999 May; 96(11):6365-70. PubMed ID: 10339593 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]