These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

877 related articles for article (PubMed ID: 32773102)

  • 1. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression.
    Schönrich G; Raftery MJ; Samstag Y
    Adv Biol Regul; 2020 Aug; 77():100741. PubMed ID: 32773102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue damage from neutrophil-induced oxidative stress in COVID-19.
    Laforge M; Elbim C; Frère C; Hémadi M; Massaad C; Nuss P; Benoliel JJ; Becker C
    Nat Rev Immunol; 2020 Sep; 20(9):515-516. PubMed ID: 32728221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2.
    Catanzaro M; Fagiani F; Racchi M; Corsini E; Govoni S; Lanni C
    Signal Transduct Target Ther; 2020 May; 5(1):84. PubMed ID: 32467561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The microbial coinfection in COVID-19.
    Chen X; Liao B; Cheng L; Peng X; Xu X; Li Y; Hu T; Li J; Zhou X; Ren B
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7777-7785. PubMed ID: 32780290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop.
    Yaqinuddin A; Kashir J
    Med Hypotheses; 2020 Oct; 143():109906. PubMed ID: 32505910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COVID-19: Role of neutrophil extracellular traps in acute lung injury.
    Yaqinuddin A; Kvietys P; Kashir J
    Respir Investig; 2020 Sep; 58(5):419-420. PubMed ID: 32611518
    [No Abstract]   [Full Text] [Related]  

  • 7. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19.
    Omarjee L; Janin A; Perrot F; Laviolle B; Meilhac O; Mahe G
    Clin Immunol; 2020 Jul; 216():108464. PubMed ID: 32405269
    [No Abstract]   [Full Text] [Related]  

  • 8. Lymphopenia in COVID-19: Therapeutic opportunities.
    Fathi N; Rezaei N
    Cell Biol Int; 2020 Sep; 44(9):1792-1797. PubMed ID: 32458561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients.
    Sawalha AH; Zhao M; Coit P; Lu Q
    Clin Immunol; 2020 Jun; 215():108410. PubMed ID: 32276140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune checkpoint inhibitors: a physiology-driven approach to the treatment of coronavirus disease 2019.
    Di Cosimo S; Malfettone A; Pérez-García JM; Llombart-Cussac A; Miceli R; Curigliano G; Cortés J
    Eur J Cancer; 2020 Aug; 135():62-65. PubMed ID: 32544799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Neutrophil Extracellular Traps in Covid-19: Only an hypothesis or a potential new field of research?
    Mozzini C; Girelli D
    Thromb Res; 2020 Jul; 191():26-27. PubMed ID: 32360977
    [No Abstract]   [Full Text] [Related]  

  • 12. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment.
    Cicco S; Cicco G; Racanelli V; Vacca A
    Mediators Inflamm; 2020; 2020():7527953. PubMed ID: 32724296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutrophils and Contact Activation of Coagulation as Potential Drivers of COVID-19.
    Busch MH; Timmermans SAMEG; Nagy M; Visser M; Huckriede J; Aendekerk JP; de Vries F; Potjewijd J; Jallah B; Ysermans R; Oude Lashof AML; Breedveld PH; van de Poll MCG; van de Horst ICC; van Bussel BCT; Theunissen ROMFIH; Spronk HMH; Damoiseaux JGMC; Ten Cate H; Nicolaes GAF; Reutelingsperger CP; van Paassen P
    Circulation; 2020 Nov; 142(18):1787-1790. PubMed ID: 32946302
    [No Abstract]   [Full Text] [Related]  

  • 14. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure.
    Thierry AR; Roch B
    Clin Sci (Lond); 2020 Jun; 134(12):1295-1300. PubMed ID: 32543703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19.
    Tomar B; Anders HJ; Desai J; Mulay SR
    Cells; 2020 Jun; 9(6):. PubMed ID: 32498376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excessive Neutrophils and Neutrophil Extracellular Traps in COVID-19.
    Wang J; Li Q; Yin Y; Zhang Y; Cao Y; Lin X; Huang L; Hoffmann D; Lu M; Qiu Y
    Front Immunol; 2020; 11():2063. PubMed ID: 33013872
    [No Abstract]   [Full Text] [Related]  

  • 17. Viral and host factors related to the clinical outcome of COVID-19.
    Zhang X; Tan Y; Ling Y; Lu G; Liu F; Yi Z; Jia X; Wu M; Shi B; Xu S; Chen J; Wang W; Chen B; Jiang L; Yu S; Lu J; Wang J; Xu M; Yuan Z; Zhang Q; Zhang X; Zhao G; Wang S; Chen S; Lu H
    Nature; 2020 Jul; 583(7816):437-440. PubMed ID: 32434211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections.
    Sies H; Parnham MJ
    Free Radic Biol Med; 2020 Aug; 156():107-112. PubMed ID: 32598985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality.
    Al-Kuraishy HM; Al-Gareeb AI; Al-Hussaniy HA; Al-Harcan NAH; Alexiou A; Batiha GE
    Int Immunopharmacol; 2022 Mar; 104():108516. PubMed ID: 35032828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.
    Azkur AK; Akdis M; Azkur D; Sokolowska M; van de Veen W; Brüggen MC; O'Mahony L; Gao Y; Nadeau K; Akdis CA
    Allergy; 2020 Jul; 75(7):1564-1581. PubMed ID: 32396996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.