These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 32773889)
1. Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds. Daviran M; Schultz KM Rheol Acta; 2019 Aug; 58(8):421-437. PubMed ID: 32773889 [TBL] [Abstract][Full Text] [Related]
2. Rheological characterization of dynamic remodeling of the pericellular region by human mesenchymal stem cell-secreted enzymes in well-defined synthetic hydrogel scaffolds. Daviran M; Longwill SM; Casella JF; Schultz KM Soft Matter; 2018 Apr; 14(16):3078-3089. PubMed ID: 29667686 [TBL] [Abstract][Full Text] [Related]
3. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness. Daviran M; Catalano J; Schultz KM Biomacromolecules; 2020 Aug; 21(8):3056-3068. PubMed ID: 32559386 [TBL] [Abstract][Full Text] [Related]
4. Role of Cell-Mediated Enzymatic Degradation and Cytoskeletal Tension on Dynamic Changes in the Rheology of the Pericellular Region Prior to Human Mesenchymal Stem Cell Motility. Daviran M; Caram HS; Schultz KM ACS Biomater Sci Eng; 2018 Feb; 4(2):468-472. PubMed ID: 29862316 [TBL] [Abstract][Full Text] [Related]
5. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology. McGlynn JA; Druggan KJ; Croland KJ; Schultz KM Acta Biomater; 2021 Feb; 121():405-417. PubMed ID: 33278674 [TBL] [Abstract][Full Text] [Related]
6. Measuring the Effects of Cytokines on the Modification of Pericellular Rheology by Human Mesenchymal Stem Cells. Daviran M; McGlynn JA; Catalano JA; Knudsen HE; Druggan KJ; Croland KJ; Stratton A; Schultz KM ACS Biomater Sci Eng; 2021 Dec; 7(12):5762-5774. PubMed ID: 34752080 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the Kinetics and Mechanism of Degradation of Human Mesenchymal Stem Cell-Laden Poly(ethylene glycol) Hydrogels. Mazzeo MS; Chai T; Daviran M; Schultz KM ACS Appl Bio Mater; 2019 Jan; 2(1):81-92. PubMed ID: 31555760 [TBL] [Abstract][Full Text] [Related]
9. A Rheological Study on the Effect of Tethering Pro- and Anti-Inflammatory Cytokines into Hydrogels on Human Mesenchymal Stem Cell Migration, Degradation, and Morphology. O'Shea TC; Croland KJ; Salem A; Urbanski R; Schultz KM Biomacromolecules; 2024 Aug; 25(8):5121-5137. PubMed ID: 38961715 [TBL] [Abstract][Full Text] [Related]
10. Measuring human mesenchymal stem cell remodeling in hydrogels with a step-change in elastic modulus. McGlynn JA; Schultz KM Soft Matter; 2022 Aug; 18(34):6340-6352. PubMed ID: 35968833 [TBL] [Abstract][Full Text] [Related]
11. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Schultz KM; Kyburz KA; Anseth KS Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3757-64. PubMed ID: 26150508 [TBL] [Abstract][Full Text] [Related]
12. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels. Xin S; Gregory CA; Alge DL Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899 [TBL] [Abstract][Full Text] [Related]
13. Thermo-rheological responsive microcapsules for time-dependent controlled release of human mesenchymal stromal cells. Mak WC; Magne B; Cheung KY; Atanasova D; Griffith M Biomater Sci; 2017 Oct; 5(11):2241-2250. PubMed ID: 28972602 [TBL] [Abstract][Full Text] [Related]
14. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783 [TBL] [Abstract][Full Text] [Related]
15. Cell-mediated degradation regulates human mesenchymal stem cell chondrogenesis and hypertrophy in MMP-sensitive hyaluronic acid hydrogels. Feng Q; Zhu M; Wei K; Bian L PLoS One; 2014; 9(6):e99587. PubMed ID: 24911871 [TBL] [Abstract][Full Text] [Related]
16. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Caron I; Rossi F; Papa S; Aloe R; Sculco M; Mauri E; Sacchetti A; Erba E; Panini N; Parazzi V; Barilani M; Forloni G; Perale G; Lazzari L; Veglianese P Biomaterials; 2016 Jan; 75():135-147. PubMed ID: 26497428 [TBL] [Abstract][Full Text] [Related]
17. Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Tsai TL; Nelson BC; Anderson PA; Zdeblick TA; Li WJ Spine J; 2014 Sep; 14(9):2127-40. PubMed ID: 24882152 [TBL] [Abstract][Full Text] [Related]
18. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Lueckgen A; Garske DS; Ellinghaus A; Mooney DJ; Duda GN; Cipitria A Biomaterials; 2019 Oct; 217():119294. PubMed ID: 31276949 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration. Gullotta F; Izzo D; Scalera F; Palazzo B; Martin I; Sannino A; Gervaso F J Mech Behav Biomed Mater; 2018 Oct; 86():294-304. PubMed ID: 30006278 [TBL] [Abstract][Full Text] [Related]
20. Design and evaluation of mesenchymal stem cells seeded chitosan/glycosaminoglycans quaternary hydrogel scaffolds for wound healing applications. Soriano-Ruiz JL; Gálvez-Martín P; López-Ruiz E; Suñer-Carbó J; Calpena-Campmany AC; Marchal JA; Clares-Naveros B Int J Pharm; 2019 Oct; 570():118632. PubMed ID: 31437562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]