These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32774338)

  • 41. Common bean proteomics: Present status and future strategies.
    Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic Diversity, Nitrogen Fixation, and Water Use Efficiency in a Panel of Honduran Common Bean (
    Wilker J; Humphries S; Rosas-Sotomayor JC; Cerna MG; Torkamaneh D; Edwards M; Navabi A; Pauls KP
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32961677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenotypic and yield responses of common bean (Phaseolus vulgaris l.) varieties to different soil moisture levels.
    Geleta RJ; Roro AG; Terfa MT
    BMC Plant Biol; 2024 Apr; 24(1):242. PubMed ID: 38575870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multienvironment quantitative trait Loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress.
    Asfaw A; Blair MW; Struik PC
    G3 (Bethesda); 2012 May; 2(5):579-95. PubMed ID: 22670228
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.).
    Blair MW; Fernandez AC; Ishitani M; Moreta D; Seki M; Ayling S; Shinozaki K
    BMC Plant Biol; 2011 Nov; 11():171. PubMed ID: 22118559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-Wide Association Study of Agronomic Traits in Common Bean.
    Kamfwa K; Cichy KA; Kelly JD
    Plant Genome; 2015 Jul; 8(2):eplantgenome2014.09.0059. PubMed ID: 33228312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting progeny performance in common bean (Phaseolus vulgaris L.) using molecular marker-based cluster analysis.
    Beattie AD; Michaels TE; Pauls KP
    Genome; 2003 Apr; 46(2):259-67. PubMed ID: 12723042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmentally stable common bean genotypes for production in different agro-ecological zones of Tanzania.
    Philipo M; Ndakidemi PA; Mbega ER
    Heliyon; 2021 Jan; 7(1):e05973. PubMed ID: 33521356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris).
    McClean PE; Burridge J; Beebe S; Rao IM; Porch TG
    Funct Plant Biol; 2011 Dec; 38(12):927-933. PubMed ID: 32480951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Marker association study of yield attributing traits in common bean (Phaseolus vulgaris L.).
    Gupta N; Zargar SM; Singh R; Nazir M; Mahajan R; Salgotra RK
    Mol Biol Rep; 2020 Sep; 47(9):6769-6783. PubMed ID: 32852680
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of factor analytic and spatial mixed models for the analysis of multi-environment trials in common bean (Phaseolus vulgaris L.) in Ethiopia.
    Argaw T; Fenta BA; Assefa E
    PLoS One; 2024; 19(4):e0301534. PubMed ID: 38636946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pea genomic selection for Italian environments.
    Annicchiarico P; Nazzicari N; Pecetti L; Romani M; Russi L
    BMC Genomics; 2019 Jul; 20(1):603. PubMed ID: 31331290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross.
    Blair MW; Galeano CH; Tovar E; Muñoz Torres MC; Castrillón AV; Beebe SE; Rao IM
    Mol Breed; 2012 Jan; 29(1):71-88. PubMed ID: 22267950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.).
    Satovic Z; Avila CM; Cruz-Izquierdo S; Díaz-Ruíz R; García-Ruíz GM; Palomino C; Gutiérrez N; Vitale S; Ocaña-Moral S; Gutiérrez MV; Cubero JI; Torres AM
    BMC Genomics; 2013 Dec; 14():932. PubMed ID: 24377374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interspecific common bean population derived from
    Cruz S; Lobatón J; Urban MO; Ariza-Suarez D; Raatz B; Aparicio J; Mosquera G; Beebe S
    Front Plant Sci; 2023; 14():1145858. PubMed ID: 37293677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic Architecture and Genomic Prediction of Cooking Time in Common Bean (
    Diaz S; Ariza-Suarez D; Ramdeen R; Aparicio J; Arunachalam N; Hernandez C; Diaz H; Ruiz H; Piepho HP; Raatz B
    Front Plant Sci; 2020; 11():622213. PubMed ID: 33643335
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment.
    Tadesse W; Gataa ZE; Rachdad FE; Baouchi AE; Kehel Z; Alemu A
    Mol Genet Genomics; 2023 Nov; 298(6):1515-1526. PubMed ID: 37851098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping.
    Gujaria-Verma N; Ramsay L; Sharpe AG; Sanderson LA; Debouck DG; Tar'an B; Bett KE
    BMC Genomics; 2016 Mar; 17():239. PubMed ID: 26979462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.
    Ovenden B; Milgate A; Wade LJ; Rebetzke GJ; Holland JB
    G3 (Bethesda); 2018 May; 8(6):1909-1919. PubMed ID: 29661842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.