These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32774338)

  • 81. Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing.
    Yadav AK; Singh CK; Kalia RK; Mittal S; Wankhede DP; Kakani RK; Ujjainwal S; Aakash ; Saroha A; Nathawat NS; Rani R; Panchariya P; Choudhary M; Solanki K; Chaturvedi KK; Archak S; Singh K; Singh GP; Singh AK
    BMC Plant Biol; 2023 Apr; 23(1):228. PubMed ID: 37120525
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Genome-wide association and genomic prediction for iron and zinc concentration and iron bioavailability in a collection of yellow dry beans.
    Izquierdo P; Sadohara R; Wiesinger J; Glahn R; Urrea C; Cichy K
    Front Genet; 2024; 15():1330361. PubMed ID: 38380426
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Association mapping for five agronomic traits in the common bean (Phaseolus vulgaris L.).
    Nemli S; Asciogul TK; Kaya HB; Kahraman A; Eşiyok D; Tanyolac B
    J Sci Food Agric; 2014 Dec; 94(15):3141-51. PubMed ID: 24659306
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean.
    MacQueen AH; White JW; Lee R; Osorno JM; Schmutz J; Miklas PN; Myers J; McClean PE; Juenger TE
    Genetics; 2020 May; 215(1):267-284. PubMed ID: 32205398
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 86. From gene banks to farmer's fields: using genomic selection to identify donors for a breeding program in rice to close the yield gap on smallholder farms.
    Tanaka R; Lui-King J; Mandaharisoa ST; Rakotondramanana M; Ranaivo HN; Pariasca-Tanaka J; Kanegae HK; Iwata H; Wissuwa M
    Theor Appl Genet; 2021 Oct; 134(10):3397-3410. PubMed ID: 34264372
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Prediction of canned black bean texture (Phaseolus vulgaris L.) from intact dry seeds using visible/near infrared spectroscopy and hyperspectral imaging data.
    Mendoza FA; Cichy KA; Sprague C; Goffnett A; Lu R; Kelly JD
    J Sci Food Agric; 2018 Jan; 98(1):283-290. PubMed ID: 28585253
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The effect of marker types and density on genomic prediction and GWAS of key performance traits in tetraploid potato.
    Aalborg T; Sverrisdóttir E; Kristensen HT; Nielsen KL
    Front Plant Sci; 2024; 15():1340189. PubMed ID: 38525152
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Simulations of rate of genetic gain in dry bean breeding programs.
    Lin J; Arief V; Jahufer Z; Osorno J; McClean P; Jarquin D; Hoyos-Villegas V
    Theor Appl Genet; 2023 Jan; 136(1):14. PubMed ID: 36662255
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions.
    Bohlouli M; Alijani S; Naderi S; Yin T; König S
    J Dairy Sci; 2019 Jan; 102(1):488-502. PubMed ID: 30343923
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Application of Genomic Selection at the Early Stage of Breeding Pipeline in Tropical Maize.
    Beyene Y; Gowda M; Pérez-Rodríguez P; Olsen M; Robbins KR; Burgueño J; Prasanna BM; Crossa J
    Front Plant Sci; 2021; 12():685488. PubMed ID: 34262585
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Large genomic introgression blocks of
    Barrera S; Berny Mier Y Teran JC; Lobaton JD; Escobar R; Gepts P; Beebe S; Urrea CA
    Plant Direct; 2022 Dec; 6(12):e470. PubMed ID: 36523608
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Phenotyping common beans for adaptation to drought.
    Beebe SE; Rao IM; Blair MW; Acosta-Gallegos JA
    Front Physiol; 2013; 4():35. PubMed ID: 23507928
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.
    Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D
    G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Optimizing predictions in IRRI's rice drought breeding program by leveraging 17 years of historical data and pedigree information.
    Khanna A; Anumalla M; Catolos M; Bhosale S; Jarquin D; Hussain W
    Front Plant Sci; 2022; 13():983818. PubMed ID: 36204059
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Accuracy and responses of genomic selection on key traits in apple breeding.
    Muranty H; Troggio M; Sadok IB; Rifaï MA; Auwerkerken A; Banchi E; Velasco R; Stevanato P; van de Weg WE; Di Guardo M; Kumar S; Laurens F; Bink MC
    Hortic Res; 2015; 2():15060. PubMed ID: 26744627
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates.
    Jha PK; Beebe S; Alvarez-Toro P; Mukankusi C; Ramirez-Villegas J
    Agric For Meteorol; 2023 Nov; 342():109735. PubMed ID: 38020492
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.).
    Tako E; Beebe SE; Reed S; Hart JJ; Glahn RP
    Nutr J; 2014 Mar; 13():28. PubMed ID: 24669764
    [TBL] [Abstract][Full Text] [Related]  

  • 99. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan.
    Turuspekov Y; Baibulatova A; Yermekbayev K; Tokhetova L; Chudinov V; Sereda G; Ganal M; Griffiths S; Abugalieva S
    BMC Plant Biol; 2017 Nov; 17(Suppl 1):190. PubMed ID: 29143598
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Estimating phenotypic stability for relevant yield and quality traits in French bean (
    Pramanik K; Sahu GS; Chandra Acharya G; Tripathy P; Dash M; Koundinya AVV; Jena C; Kumar DS; Mohapatra PP; Pradhan J; Karubakee S; Moharana DP
    Heliyon; 2024 Mar; 10(5):e26918. PubMed ID: 38463900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.