BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32776091)

  • 1. Acute Striato-Cortical Synchronization Induces Focal Motor Seizures in Primates.
    Aupy J; Ribot B; Dovero S; Biendon N; Nguyen TH; Porras G; Deffains M; Guehl D; Burbaud P
    Cereb Cortex; 2020 Nov; 30(12):6469-6480. PubMed ID: 32776091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective striatal fast-spiking interneuron inhibition induces cortical seizure.
    Aupy J; Ribot B; Guehl D; Nguyen TH; Burbaud P
    J Neurosci Res; 2024 Jan; 102(1):e25270. PubMed ID: 38284843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials.
    Devergnas A; Piallat B; Prabhu S; Torres N; Louis Benabid A; David O; Chabardès S
    Brain; 2012 Jul; 135(Pt 7):2263-76. PubMed ID: 22710196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortico-striatal synchronization in human focal seizures.
    Aupy J; Wendling F; Taylor K; Bulacio J; Gonzalez-Martinez J; Chauvel P
    Brain; 2019 May; 142(5):1282-1295. PubMed ID: 30938430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurophysiological correlates of motor tics following focal striatal disinhibition.
    McCairn KW; Bronfeld M; Belelovsky K; Bar-Gad I
    Brain; 2009 Aug; 132(Pt 8):2125-38. PubMed ID: 19506070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical areas involved in behavioral expression of external pallidum dysfunctions: A PET imaging study in non-human primates.
    Galineau L; Kas A; Worbe Y; Chaigneau M; Herard AS; Guillermier M; Delzescaux T; Féger J; Hantraye P; Tremblay L
    Neuroimage; 2017 Feb; 146():1025-1037. PubMed ID: 27989846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates.
    Sgambato-Faure V; Worbe Y; Epinat J; Féger J; Tremblay L
    Brain Struct Funct; 2016 Jan; 221(1):345-64. PubMed ID: 25304400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted basal ganglia-thalamocortical loops in focal to bilateral tonic-clonic seizures.
    He X; Chaitanya G; Asma B; Caciagli L; Bassett DS; Tracy JI; Sperling MR
    Brain; 2020 Jan; 143(1):175-190. PubMed ID: 31860076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal tissue transplantation in non-human primates.
    Kendall AL; Hantraye P; Palfi S
    Prog Brain Res; 2000; 127():381-404. PubMed ID: 11142037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of changes in cortical excitability upon the epileptic bursts in generalized penicillin epilepsy of the cat.
    Gloor P; Pellegrini A; Kostopoulos GK
    Electroencephalogr Clin Neurophysiol; 1979 Mar; 46(3):274-89. PubMed ID: 85521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys.
    Tachibana Y; Kita H; Chiken S; Takada M; Nambu A
    Eur J Neurosci; 2008 Jan; 27(1):238-53. PubMed ID: 18093168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striatal NMDA receptors gate cortico-pallidal synchronization in a rat model of Parkinson's disease.
    Zold CL; Escande MV; Pomata PE; Riquelme LA; Murer MG
    Neurobiol Dis; 2012 Jul; 47(1):38-48. PubMed ID: 22465187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata.
    Kolomiets BP; Deniau JM; Glowinski J; Thierry AM
    Neuroscience; 2003; 117(4):931-8. PubMed ID: 12654344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of GABA-B antagonist on cortical epileptic afterdischarges in rats is similar to that of GABA-A antagonist.
    Zivanović D; Bernásková K; Kaminskij Y; Mares P
    Physiol Res; 2003; 52(5):651-5. PubMed ID: 14535842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus.
    Steriade M; Contreras D
    J Neurophysiol; 1998 Sep; 80(3):1439-55. PubMed ID: 9744951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical Control of Subthalamic Neuronal Activity through the Hyperdirect and Indirect Pathways in Monkeys.
    Polyakova Z; Chiken S; Hatanaka N; Nambu A
    J Neurosci; 2020 Sep; 40(39):7451-7463. PubMed ID: 32847963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemogenetic attenuation of cortical seizures in nonhuman primates.
    Miyakawa N; Nagai Y; Hori Y; Mimura K; Orihara A; Oyama K; Matsuo T; Inoue KI; Suzuki T; Hirabayashi T; Suhara T; Takada M; Higuchi M; Kawasaki K; Minamimoto T
    Nat Commun; 2023 Feb; 14(1):971. PubMed ID: 36854724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.