These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
967 related articles for article (PubMed ID: 32776232)
1. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Han Y; Ma Y; Wu Z; Zhang F; Zheng D; Liu X; Tao L; Liang Z; Yang Z; Li X; Huang J; Guo X Eur J Nucl Med Mol Imaging; 2021 Feb; 48(2):350-360. PubMed ID: 32776232 [TBL] [Abstract][Full Text] [Related]
2. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
3. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Shen H; Chen L; Liu K; Zhao K; Li J; Yu L; Ye H; Zhu W Quant Imaging Med Surg; 2021 Jul; 11(7):2918-2932. PubMed ID: 34249623 [TBL] [Abstract][Full Text] [Related]
4. Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Learning Algorithms for Non-small Cell Lung Cancer Histopathological Subtype Phenotype Decoding. Khodabakhshi Z; Amini M; Hajianfar G; Oveisi M; Shiri I; Zaidi H Clin Oncol (R Coll Radiol); 2023 Nov; 35(11):713-725. PubMed ID: 37599160 [TBL] [Abstract][Full Text] [Related]
5. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related]
6. Machine learning for differentiating lung squamous cell cancer from adenocarcinoma using Clinical-Metabolic characteristics and 18F-FDG PET/CT radiomics. Zhang Y; Liu H; Chang C; Yin Y; Wang R PLoS One; 2024; 19(4):e0300170. PubMed ID: 38568892 [TBL] [Abstract][Full Text] [Related]
7. Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm. Amini M; Hajianfar G; Hadadi Avval A; Nazari M; Deevband MR; Oveisi M; Shiri I; Zaidi H Clin Oncol (R Coll Radiol); 2022 Feb; 34(2):114-127. PubMed ID: 34872823 [TBL] [Abstract][Full Text] [Related]
8. Machine learning based on clinico-biological features integrated Ren C; Zhang J; Qi M; Zhang J; Zhang Y; Song S; Sun Y; Cheng J Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772 [TBL] [Abstract][Full Text] [Related]
9. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Zhu X; Dong D; Chen Z; Fang M; Zhang L; Song J; Yu D; Zang Y; Liu Z; Shi J; Tian J Eur Radiol; 2018 Jul; 28(7):2772-2778. PubMed ID: 29450713 [TBL] [Abstract][Full Text] [Related]
10. A Machine Learning Approach Using PET/CT-based Radiomics for Prediction of PD-L1 Expression in Non-small Cell Lung Cancer. Lim CH; Koh YW; Hyun SH; Lee SJ Anticancer Res; 2022 Dec; 42(12):5875-5884. PubMed ID: 36456151 [TBL] [Abstract][Full Text] [Related]
11. Radiomics feature analysis and model research for predicting histopathological subtypes of non-small cell lung cancer on CT images: A multi-dataset study. Song F; Song X; Feng Y; Fan G; Sun Y; Zhang P; Li J; Liu F; Zhang G Med Phys; 2023 Jul; 50(7):4351-4365. PubMed ID: 36682051 [TBL] [Abstract][Full Text] [Related]
12. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in Zhang Y; Cheng C; Liu Z; Wang L; Pan G; Sun G; Chang Y; Zuo C; Yang X Med Phys; 2019 Oct; 46(10):4520-4530. PubMed ID: 31348535 [TBL] [Abstract][Full Text] [Related]
13. A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer. Hyun SH; Ahn MS; Koh YW; Lee SJ Clin Nucl Med; 2019 Dec; 44(12):956-960. PubMed ID: 31689276 [TBL] [Abstract][Full Text] [Related]
14. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
15. Radiomics for Classification of Lung Cancer Histological Subtypes Based on Nonenhanced Computed Tomography. E L; Lu L; Li L; Yang H; Schwartz LH; Zhao B Acad Radiol; 2019 Sep; 26(9):1245-1252. PubMed ID: 30502076 [TBL] [Abstract][Full Text] [Related]
16. Multi-subtype classification model for non-small cell lung cancer based on radiomics: SLS model. Liu J; Cui J; Liu F; Yuan Y; Guo F; Zhang G Med Phys; 2019 Jul; 46(7):3091-3100. PubMed ID: 31002395 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal Carcinoma Post-therapy PET/CT Images. Du D; Feng H; Lv W; Ashrafinia S; Yuan Q; Wang Q; Yang W; Feng Q; Chen W; Rahmim A; Lu L Mol Imaging Biol; 2020 Jun; 22(3):730-738. PubMed ID: 31338709 [TBL] [Abstract][Full Text] [Related]
18. Phenotyping the Histopathological Subtypes of Non-Small-Cell Lung Carcinoma: How Beneficial Is Radiomics? Pasini G; Stefano A; Russo G; Comelli A; Marinozzi F; Bini F Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980475 [TBL] [Abstract][Full Text] [Related]
19. Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Astaraki M; Wang C; Buizza G; Toma-Dasu I; Lazzeroni M; Smedby Ö Phys Med; 2019 Apr; 60():58-65. PubMed ID: 31000087 [TBL] [Abstract][Full Text] [Related]
20. A multi-instance tumor subtype classification method for small PET datasets using RA-DL attention module guided deep feature extraction with radiomics features. Diao Z; Jiang H Comput Biol Med; 2024 May; 174():108461. PubMed ID: 38626509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]