These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
953 related articles for article (PubMed ID: 32776232)
21. The Machine Learning Model for Distinguishing Pathological Subtypes of Non-Small Cell Lung Cancer. Zhao H; Su Y; Wang M; Lyu Z; Xu P; Jiao Y; Zhang L; Han W; Tian L; Fu P Front Oncol; 2022; 12():875761. PubMed ID: 35692759 [TBL] [Abstract][Full Text] [Related]
22. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on Koyasu S; Nishio M; Isoda H; Nakamoto Y; Togashi K Ann Nucl Med; 2020 Jan; 34(1):49-57. PubMed ID: 31659591 [TBL] [Abstract][Full Text] [Related]
23. Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscle CT radiomics and machine learning. Dong X; Dan X; Yawen A; Haibo X; Huan L; Mengqi T; Linglong C; Zhao R Thorac Cancer; 2020 Sep; 11(9):2650-2659. PubMed ID: 32767522 [TBL] [Abstract][Full Text] [Related]
24. Pre-treatment Ahn HK; Lee H; Kim SG; Hyun SH Clin Radiol; 2019 Jun; 74(6):467-473. PubMed ID: 30898382 [TBL] [Abstract][Full Text] [Related]
25. Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis. Yu L; Tao G; Zhu L; Wang G; Li Z; Ye J; Chen Q BMC Cancer; 2019 May; 19(1):464. PubMed ID: 31101024 [TBL] [Abstract][Full Text] [Related]
26. Intra-tumoural heterogeneity characterization through texture and colour analysis for differentiation of non-small cell lung carcinoma subtypes. Ma Y; Feng W; Wu Z; Liu M; Zhang F; Liang Z; Cui C; Huang J; Li X; Guo X Phys Med Biol; 2018 Aug; 63(16):165018. PubMed ID: 30051884 [TBL] [Abstract][Full Text] [Related]
27. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245 [TBL] [Abstract][Full Text] [Related]
28. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. Gong J; Bao X; Wang T; Liu J; Peng W; Shi J; Wu F; Gu Y Oncoimmunology; 2022; 11(1):2028962. PubMed ID: 35096486 [TBL] [Abstract][Full Text] [Related]
29. Machine-learning-based computed tomography radiomic analysis for histologic subtype classification of thymic epithelial tumours. Hu J; Zhao Y; Li M; Liu Y; Wang F; Weng Q; You R; Cao D Eur J Radiol; 2020 May; 126():108929. PubMed ID: 32169748 [TBL] [Abstract][Full Text] [Related]
30. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
31. Non-invasive classification of non-small cell lung cancer: a comparison between random forest models utilising radiomic and semantic features. Bashir U; Kawa B; Siddique M; Mak SM; Nair A; Mclean E; Bille A; Goh V; Cook G Br J Radiol; 2019 Jul; 92(1099):20190159. PubMed ID: 31166787 [TBL] [Abstract][Full Text] [Related]
32. Application of 18 F-fluorodeoxyglucose PET/CT radiomic features and machine learning to predict early recurrence of non-small cell lung cancer after curative-intent therapy. Park SB; Kim KU; Park YW; Hwang JH; Lim CH Nucl Med Commun; 2023 Feb; 44(2):161-168. PubMed ID: 36458424 [TBL] [Abstract][Full Text] [Related]
33. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Kirienko M; Cozzi L; Rossi A; Voulaz E; Antunovic L; Fogliata A; Chiti A; Sollini M Eur J Nucl Med Mol Imaging; 2018 Sep; 45(10):1649-1660. PubMed ID: 29623375 [TBL] [Abstract][Full Text] [Related]
34. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images. Zhang J; Jin J; Ai Y; Zhu K; Xiao C; Xie C; Jin X Eur Radiol; 2021 Feb; 31(2):1022-1028. PubMed ID: 32822055 [TBL] [Abstract][Full Text] [Related]
35. Classification of Histological Types and Stages in Non-small Cell Lung Cancer Using Radiomic Features Based on CT Images. Lin J; Yu Y; Zhang X; Wang Z; Li S J Digit Imaging; 2023 Jun; 36(3):1029-1037. PubMed ID: 36828962 [TBL] [Abstract][Full Text] [Related]
36. Histological Subtypes Classification of Lung Cancers on CT Images Using 3D Deep Learning and Radiomics. Guo Y; Song Q; Jiang M; Guo Y; Xu P; Zhang Y; Fu CC; Fang Q; Zeng M; Yao X Acad Radiol; 2021 Sep; 28(9):e258-e266. PubMed ID: 32622740 [TBL] [Abstract][Full Text] [Related]
37. Intratumoral and peritumoral CT-based radiomics strategy reveals distinct subtypes of non-small-cell lung cancer. Tang X; Huang H; Du P; Wang L; Yin H; Xu X J Cancer Res Clin Oncol; 2022 Sep; 148(9):2247-2260. PubMed ID: 35430688 [TBL] [Abstract][Full Text] [Related]
38. Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions. Zhang R; Zhu L; Cai Z; Jiang W; Li J; Yang C; Yu C; Jiang B; Wang W; Xu W; Chai X; Zhang X; Tang Y Eur J Radiol; 2019 Dec; 121():108735. PubMed ID: 31733432 [TBL] [Abstract][Full Text] [Related]
39. Evaluating Histological Subtypes Classification of Primary Lung Cancers on Unenhanced Computed Tomography Based on Random Forest Model. Huang J; He W; Xu H; Yang S; Dai J; Guo W; Zeng M J Healthc Eng; 2023; 2023():8964676. PubMed ID: 36794098 [TBL] [Abstract][Full Text] [Related]
40. Efficient 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based machine learning model for predicting epidermal growth factor receptor mutations in non-small cell lung cancer. Ruan D; Fang J; Teng X Q J Nucl Med Mol Imaging; 2024 Mar; 68(1):70-83. PubMed ID: 35420272 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]