These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32776308)
21. Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. Ramani G; Meera B; Vanitha C; Rajendhran J; Gunasekaran P J Ind Microbiol Biotechnol; 2015 Apr; 42(4):553-65. PubMed ID: 25626525 [TBL] [Abstract][Full Text] [Related]
22. A novel dienelactone hydrolase from the thermoacidophilic archaeon Sulfolobus solfataricus P1: purification, characterization, and expression. Park YJ; Yoon SJ; Lee HB Biochim Biophys Acta; 2010 Nov; 1800(11):1164-72. PubMed ID: 20655986 [TBL] [Abstract][Full Text] [Related]
23. Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. Girfoglio M; Rossi M; Cannio R J Bacteriol; 2012 Sep; 194(18):5091-100. PubMed ID: 22821975 [TBL] [Abstract][Full Text] [Related]
24. In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Hattori A; Unno H; Goda S; Motoyama K; Yoshimura T; Hemmi H J Bacteriol; 2015 Nov; 197(21):3463-71. PubMed ID: 26303832 [TBL] [Abstract][Full Text] [Related]
25. A carboxylesterase from the hyperthermophilic archaeon Sulfolobus solfataricus: cloning of the gene, characterization of the protein. Morana A; Di Prizito N; Aurilia V; Rossi M; Cannio R Gene; 2002 Jan; 283(1-2):107-15. PubMed ID: 11867217 [TBL] [Abstract][Full Text] [Related]
26. A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression. Park YJ; Choi SY; Lee HB Biochim Biophys Acta; 2006 May; 1760(5):820-8. PubMed ID: 16574328 [TBL] [Abstract][Full Text] [Related]
27. Overexpression and characterization of a novel cold-adapted and salt-tolerant GH1 β-glucosidase from the marine bacterium Alteromonas sp. L82. Sun J; Wang W; Yao C; Dai F; Zhu X; Liu J; Hao J J Microbiol; 2018 Sep; 56(9):656-664. PubMed ID: 30141158 [TBL] [Abstract][Full Text] [Related]
28. Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Fang TY; Tseng WC; Guo MS; Shih TY; Hung XG J Agric Food Chem; 2006 Sep; 54(19):7105-12. PubMed ID: 16968069 [TBL] [Abstract][Full Text] [Related]
29. Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus. Lubelska JM; Jonuscheit M; Schleper C; Albers SV; Driessen AJ Extremophiles; 2006 Oct; 10(5):383-91. PubMed ID: 16604273 [TBL] [Abstract][Full Text] [Related]
30. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. Restaino OF; Borzacchiello MG; Scognamiglio I; Fedele L; Alfano A; Porzio E; Manco G; De Rosa M; Schiraldi C BMC Biotechnol; 2018 Mar; 18(1):18. PubMed ID: 29558934 [TBL] [Abstract][Full Text] [Related]
31. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
32. A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Merone L; Mandrich L; Rossi M; Manco G Extremophiles; 2005 Aug; 9(4):297-305. PubMed ID: 15909078 [TBL] [Abstract][Full Text] [Related]
33. Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Schröder C; Elleuche S; Blank S; Antranikian G Enzyme Microb Technol; 2014 Apr; 57():48-54. PubMed ID: 24629267 [TBL] [Abstract][Full Text] [Related]
34. The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H-dependent cytochrome P450 system. Puchkaev AV; Ortiz de Montellano PR Arch Biochem Biophys; 2005 Feb; 434(1):169-77. PubMed ID: 15629120 [TBL] [Abstract][Full Text] [Related]
35. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Wu Y; Yuan S; Chen S; Wu D; Chen J; Wu J Food Chem; 2013 Jun; 138(2-3):1588-95. PubMed ID: 23411285 [TBL] [Abstract][Full Text] [Related]
36. Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus. Tachdjian S; Kelly RM J Bacteriol; 2006 Jun; 188(12):4553-9. PubMed ID: 16740961 [TBL] [Abstract][Full Text] [Related]
37. Identification of a novel alpha-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. Brouns SJ; Smits N; Wu H; Snijders AP; Wright PC; de Vos WM; van der Oost J J Bacteriol; 2006 Apr; 188(7):2392-9. PubMed ID: 16547025 [TBL] [Abstract][Full Text] [Related]
38. Selective depletion of Sulfolobus solfataricus transcription factor E under heat shock conditions. Iqbal J; Qureshi SA J Bacteriol; 2010 Jun; 192(11):2887-91. PubMed ID: 20363950 [TBL] [Abstract][Full Text] [Related]