These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32776325)
1. Analysis of corn and sorghum flour mixtures using laser-induced breakdown spectroscopy. Akın PA; Sezer B; Bean SR; Peiris K; Tilley M; Apaydın H; Boyacı İH J Sci Food Agric; 2021 Feb; 101(3):1076-1084. PubMed ID: 32776325 [TBL] [Abstract][Full Text] [Related]
2. A Rapid and Nondestructive Method for Simultaneous Determination of Aflatoxigenic Fungus and Aflatoxin Contamination on Corn Kernels. Tao F; Yao H; Zhu F; Hruska Z; Liu Y; Rajasekaran K; Bhatnagar D J Agric Food Chem; 2019 May; 67(18):5230-5239. PubMed ID: 30986348 [TBL] [Abstract][Full Text] [Related]
3. Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours. Markiewicz-Keszycka M; Casado-Gavalda MP; Cama-Moncunill X; Cama-Moncunill R; Dixit Y; Cullen PJ; Sullivan C Food Chem; 2018 Apr; 244():324-330. PubMed ID: 29120789 [TBL] [Abstract][Full Text] [Related]
4. Coffee arabica adulteration: Detection of wheat, corn and chickpea. Sezer B; Apaydin H; Bilge G; Boyaci IH Food Chem; 2018 Oct; 264():142-148. PubMed ID: 29853358 [TBL] [Abstract][Full Text] [Related]
5. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. Jaworski NW; Lærke HN; Bach Knudsen KE; Stein HH J Anim Sci; 2015 Mar; 93(3):1103-13. PubMed ID: 26020887 [TBL] [Abstract][Full Text] [Related]
6. Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta. Ferreira SM; de Mello AP; de Caldas Rosa dos Anjos M; Krüger CC; Azoubel PM; de Oliveira Alves MA Food Chem; 2016 Jan; 191():147-51. PubMed ID: 26258714 [TBL] [Abstract][Full Text] [Related]
7. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy. Bilge G; Sezer B; Eseller KE; Berberoglu H; Topcu A; Boyaci IH Food Chem; 2016 Dec; 212():183-8. PubMed ID: 27374522 [TBL] [Abstract][Full Text] [Related]
8. Two-Step Partial Least Squares-Discriminant Analysis Modeling for Accurate Classification of Edible Sea Salt Products Using Laser-Induced Breakdown Spectroscopy. Park J; Kumar S; Han SH; Singh VK; Nam SH; Lee Y Appl Spectrosc; 2022 Sep; 76(9):1042-1050. PubMed ID: 35311386 [TBL] [Abstract][Full Text] [Related]
9. Non-destructive determination of grass pea and pea flour adulteration in chickpea flour using near-infrared reflectance spectroscopy and chemometrics. Bala M; Sethi S; Sharma S; Mridula D; Kaur G J Sci Food Agric; 2023 Feb; 103(3):1294-1302. PubMed ID: 36098480 [TBL] [Abstract][Full Text] [Related]
10. Quantification and Detection of Ground Garlic Adulteration Using Fourier-Transform Near-Infrared Reflectance Spectra. Daszykowski M; Kula M; Stanimirova I Foods; 2023 Sep; 12(18):. PubMed ID: 37761086 [TBL] [Abstract][Full Text] [Related]
11. Application of FTIR-ATR spectroscopy coupled with multivariate analysis for rapid estimation of butter adulteration. Fadzlillah NA; Rohman A; Ismail A; Mustafa S; Khatib A J Oleo Sci; 2013; 62(8):555-62. PubMed ID: 23985484 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the Use of Vibrational Spectroscopy to Detect the Level of Adulteration of Cricket Powder in Plant Flours: The Effect of the Matrix. Alagappan S; Ma S; Nastasi JR; Hoffman LC; Cozzolino D Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339641 [TBL] [Abstract][Full Text] [Related]
13. [Effect of the sorghum extraction process on the color of the flour and tortillas made from mixtures with lime-treated cornmeal]. Martínez F; Ciacco CF; Salinas Y Arch Latinoam Nutr; 1992 Jun; 42(2):155-60. PubMed ID: 1341855 [TBL] [Abstract][Full Text] [Related]
14. Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Rodríguez SD; Rolandelli G; Buera MP Food Chem; 2019 Feb; 274():392-401. PubMed ID: 30372956 [TBL] [Abstract][Full Text] [Related]
15. Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy. Gottfried JL; De Lucia FC; Munson CA; Miziolek AW Appl Spectrosc; 2008 Apr; 62(4):353-63. PubMed ID: 18416891 [TBL] [Abstract][Full Text] [Related]
16. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS). Velioglu HM; Sezer B; Bilge G; Baytur SE; Boyaci IH Meat Sci; 2018 Apr; 138():28-33. PubMed ID: 29289716 [TBL] [Abstract][Full Text] [Related]
17. Rapid detection of fumonisin B Shen G; Kang X; Su J; Qiu J; Liu X; Xu J; Shi J; Mohamed SR Food Chem; 2022 Aug; 384():132487. PubMed ID: 35189437 [TBL] [Abstract][Full Text] [Related]
18. Online detection and quantification of particles of ergot bodies in cereal flour using near-infrared hyperspectral imaging. Vermeulen P; Ebene MB; Orlando B; Fernández Pierna JA; Baeten V Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Aug; 34(8):1312-1319. PubMed ID: 28580874 [TBL] [Abstract][Full Text] [Related]
19. Laser-Induced Breakdown Spectroscopy Based Protein Assay for Cereal Samples. Sezer B; Bilge G; Boyaci IH J Agric Food Chem; 2016 Dec; 64(49):9459-9463. PubMed ID: 27960277 [TBL] [Abstract][Full Text] [Related]
20. Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS). Kim G; Kwak J; Choi J; Park K J Agric Food Chem; 2012 Jan; 60(3):718-24. PubMed ID: 22148630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]