These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32776612)
1. Thyroid hormone receptors are required for the melatonin-dependent control of Rfrp gene expression in mice. Quignon C; Beymer M; Gauthier K; Gauer F; Simonneaux V FASEB J; 2020 Sep; 34(9):12072-12082. PubMed ID: 32776612 [TBL] [Abstract][Full Text] [Related]
2. Involvement of thyrotropin in photoperiodic signal transduction in mice. Ono H; Hoshino Y; Yasuo S; Watanabe M; Nakane Y; Murai A; Ebihara S; Korf HW; Yoshimura T Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18238-42. PubMed ID: 19015516 [TBL] [Abstract][Full Text] [Related]
3. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. Dardente H; Simonneaux V J Neuroendocrinol; 2022 May; 34(5):e13124. PubMed ID: 35384117 [TBL] [Abstract][Full Text] [Related]
4. RFamide-related peptide gene is a melatonin-driven photoperiodic gene. Revel FG; Saboureau M; Pévet P; Simonneaux V; Mikkelsen JD Endocrinology; 2008 Mar; 149(3):902-12. PubMed ID: 18079200 [TBL] [Abstract][Full Text] [Related]
5. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster. Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281 [TBL] [Abstract][Full Text] [Related]
6. TSH restores a summer phenotype in photoinhibited mammals via the RF-amides RFRP3 and kisspeptin. Klosen P; Sébert ME; Rasri K; Laran-Chich MP; Simonneaux V FASEB J; 2013 Jul; 27(7):2677-86. PubMed ID: 23538709 [TBL] [Abstract][Full Text] [Related]
7. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Hanon EA; Lincoln GA; Fustin JM; Dardente H; Masson-Pévet M; Morgan PJ; Hazlerigg DG Curr Biol; 2008 Aug; 18(15):1147-52. PubMed ID: 18674911 [TBL] [Abstract][Full Text] [Related]
8. Circannual variation in thyroid hormone deiodinases in a short-day breeder. Sáenz de Miera C; Hanon EA; Dardente H; Birnie M; Simonneaux V; Lincoln GA; Hazlerigg DG J Neuroendocrinol; 2013 Apr; 25(4):412-21. PubMed ID: 23282080 [TBL] [Abstract][Full Text] [Related]
9. Discontinuity in the molecular neuroendocrine response to increasing daylengths in Ile-de-France ewes: Is transient Dio2 induction a key feature of circannual timing? Dardente H; Lomet D; Chesneau D; Pellicer-Rubio MT; Hazlerigg D J Neuroendocrinol; 2019 Aug; 31(8):e12775. PubMed ID: 31340078 [TBL] [Abstract][Full Text] [Related]
11. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary. Wood S; Loudon A J Endocrinol; 2014 Aug; 222(2):R39-59. PubMed ID: 24891434 [TBL] [Abstract][Full Text] [Related]
12. Acute downregulation of Type II and Type III iodothyronine deiodinases by photoperiod in peripubertal male and female Siberian hamsters. Kampf-Lassin A; Prendergast BJ Gen Comp Endocrinol; 2013 Nov; 193():72-8. PubMed ID: 23891658 [TBL] [Abstract][Full Text] [Related]
13. Photoperiodic regulation in a wild-derived mouse strain. Sáenz de Miera C; Beymer M; Routledge K; Król E; Selman C; Hazlerigg DG; Simonneaux V J Exp Biol; 2020 Mar; 223(Pt 6):. PubMed ID: 32098881 [TBL] [Abstract][Full Text] [Related]
14. Melatonin-induced changes in the expression of thyroid hormone-converting enzymes in hypothalamus depend on the timing of melatonin injections and genetic background in mice. Goto M; Matsuo H; Iigo M; Furuse M; Korf HW; Yasuo S Gen Comp Endocrinol; 2013 Jun; 186():33-40. PubMed ID: 23500007 [TBL] [Abstract][Full Text] [Related]
15. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Korf HW Gen Comp Endocrinol; 2018 Mar; 258():236-243. PubMed ID: 28511899 [TBL] [Abstract][Full Text] [Related]
16. Maternal photoperiodic programming enlightens the internal regulation of thyroid-hormone deiodinases in tanycytes. Sáenz de Miera C J Neuroendocrinol; 2019 Jan; 31(1):e12679. PubMed ID: 30585670 [TBL] [Abstract][Full Text] [Related]
17. A circannual clock drives expression of genes central for seasonal reproduction. Sáenz de Miera C; Monecke S; Bartzen-Sprauer J; Laran-Chich MP; Pévet P; Hazlerigg DG; Simonneaux V Curr Biol; 2014 Jul; 24(13):1500-6. PubMed ID: 24980500 [TBL] [Abstract][Full Text] [Related]
18. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. Helfer G; Barrett P; Morgan PJ J Neuroendocrinol; 2019 Mar; 31(3):e12680. PubMed ID: 30585661 [TBL] [Abstract][Full Text] [Related]
19. The impact of thyroid hormone in seasonal breeding has a restricted transcriptional signature. Lomet D; Cognié J; Chesneau D; Dubois E; Hazlerigg D; Dardente H Cell Mol Life Sci; 2018 Mar; 75(5):905-919. PubMed ID: 28975373 [TBL] [Abstract][Full Text] [Related]
20. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). Hanon EA; Routledge K; Dardente H; Masson-Pévet M; Morgan PJ; Hazlerigg DG J Neuroendocrinol; 2010 Jan; 22(1):51-5. PubMed ID: 19912472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]