These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32776884)

  • 1. Optimal Force Myography Placement For Maximizing Locomotion Classification Accuracy in Transfemoral Amputees: A Pilot Study.
    Godiyal AK; Joshi D
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):959-968. PubMed ID: 32776884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Iontronic FMG for Classification of Muscular Locomotion.
    Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Force Myography-Based Approach for Continuous Estimation of Knee Joint Angle in Lower Limb Amputees and Able-Bodied Subjects.
    Kumar A; Godiyal AK; Joshi P; Joshi D
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):701-710. PubMed ID: 32396114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-density force myography: A possible alternative for upper-limb prosthetic control.
    Radmand A; Scheme E; Englehart K
    J Rehabil Res Dev; 2016; 53(4):443-56. PubMed ID: 27532260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Low-Density Force Myography Armband for Classification of Upper Limb Gestures.
    Rehman MU; Shah K; Haq IU; Iqbal S; Ismail MA; Selimefendigil F
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements.
    Sadarangani GP; Menon C
    Biomed Eng Online; 2017 May; 16(1):59. PubMed ID: 28511661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counting Grasping Action Using Force Myography: An Exploratory Study With Healthy Individuals.
    Xiao ZG; Menon C
    JMIR Rehabil Assist Technol; 2017 May; 4(1):e5. PubMed ID: 28582263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment.
    Sadarangani GP; Jiang X; Simpson LA; Eng JJ; Menon C
    Front Bioeng Biotechnol; 2017; 5():42. PubMed ID: 28798912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regressing grasping using force myography: an exploratory study.
    Sadeghi Chegani R; Menon C
    Biomed Eng Online; 2018 Oct; 17(1):159. PubMed ID: 30352593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research on proportional control system of prosthetic hand based on FMG signals].
    Yi J; Yu H; Li P; Zhao S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):39-44. PubMed ID: 23488135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the Sampling Frequency and Channel Number for Force Myography Based Hand Gesture Recognition.
    Lei G; Zhang S; Fang Y; Wang Y; Zhang X
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Channel Selection for Gesture Classification for Prosthesis Control Using Force Myography: A Case Study.
    Ahmadizadeh C; Pousett B; Menon C
    Front Bioeng Biotechnol; 2019; 7():331. PubMed ID: 31921794
    [No Abstract]   [Full Text] [Related]  

  • 14. FMG Versus EMG: A Comparison of Usability for Real-Time Pattern Recognition Based Control.
    Belyea A; Englehart K; Scheme E
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3098-3104. PubMed ID: 30794502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted reinnervation in the transfemoral amputee: a preliminary study of surgical technique.
    Agnew SP; Schultz AE; Dumanian GA; Kuiken TA
    Plast Reconstr Surg; 2012 Jan; 129(1):187-194. PubMed ID: 22186509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Level walking and stair climbing gait in above-knee amputees.
    Bae TS; Choi K; Mun M
    J Med Eng Technol; 2009; 33(2):130-5. PubMed ID: 19205992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.
    Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure signature of forearm as predictor of grip force.
    Wininger M; Kim NH; Craelius W
    J Rehabil Res Dev; 2008; 45(6):883-92. PubMed ID: 19009474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparative study of the volume difference vs. healthy limb, morphological and population description in transfemoral amputees].
    Mendoza-Cruz F; Rodríguez-Reyes G; Galván Duque-Gastélum C; Alvarez-Camacho M
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S85-93. PubMed ID: 25264803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.