These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 32777293)
1. Immunoadjuvants for cancer immunotherapy: A review of recent developments. Banstola A; Jeong JH; Yook S Acta Biomater; 2020 Sep; 114():16-30. PubMed ID: 32777293 [TBL] [Abstract][Full Text] [Related]
2. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Gorbet MJ; Ranjan A Pharmacol Ther; 2020 Mar; 207():107456. PubMed ID: 31863820 [TBL] [Abstract][Full Text] [Related]
4. An Endogenous Vaccine Based on Fluorophores and Multivalent Immunoadjuvants Regulates Tumor Micro-Environment for Synergistic Photothermal and Immunotherapy. Li L; Yang S; Song L; Zeng Y; He T; Wang N; Yu C; Yin T; Liu L; Wei X; Wu Q; Wei Y; Yang L; Gong C Theranostics; 2018; 8(3):860-873. PubMed ID: 29344312 [TBL] [Abstract][Full Text] [Related]
5. Cancer photo-immunotherapy: from bench to bedside. Wang M; Rao J; Wang M; Li X; Liu K; Naylor MF; Nordquist RE; Chen WR; Zhou F Theranostics; 2021; 11(5):2218-2231. PubMed ID: 33500721 [TBL] [Abstract][Full Text] [Related]
6. Local Destruction of Tumors for Systemic Immunoresponse: Engineering Antigen-Capturing Nanoparticles as Stimulus-Responsive Immunoadjuvants. Lu J; Guo Z; Zheng R; Xie W; Gao X; Gao J; Zhang Y; Xu W; Ye J; Guo X; Tang J; Yu J; Wang L; Xu B; Zhang G; Zhao L ACS Appl Mater Interfaces; 2022 Feb; 14(4):4995-5008. PubMed ID: 35051331 [TBL] [Abstract][Full Text] [Related]
7. Large-Pore Mesoporous-Silica-Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. Ding B; Shao S; Yu C; Teng B; Wang M; Cheng Z; Wong KL; Ma P; Lin J Adv Mater; 2018 Dec; 30(52):e1802479. PubMed ID: 30387197 [TBL] [Abstract][Full Text] [Related]
8. Photoimmunotherapy for cancer treatment. Chen WR; Huang Z; Korbelik M; Nordquist RE; Liu H J Environ Pathol Toxicol Oncol; 2006; 25(1-2):281-91. PubMed ID: 16566724 [TBL] [Abstract][Full Text] [Related]
9. Development of immunoadjuvants for immunotherapy of cancer. Azuma I; Seya T Int Immunopharmacol; 2001 Jul; 1(7):1249-59. PubMed ID: 11460306 [TBL] [Abstract][Full Text] [Related]
10. Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy. Lu Q; Qi S; Li P; Yang L; Yang S; Wang Y; Cheng Y; Song Y; Wang S; Tan F; Li N J Mater Chem B; 2019 Apr; 7(15):2499-2511. PubMed ID: 32255127 [TBL] [Abstract][Full Text] [Related]
11. Immunotherapy with STING and TLR9 agonists promotes synergistic therapeutic efficacy with suppressed cancer-associated fibroblasts in colon carcinoma. Hajiabadi S; Alidadi S; Montakhab Farahi Z; Ghahramani Seno MM; Farzin H; Haghparast A Front Immunol; 2023; 14():1258691. PubMed ID: 37901237 [TBL] [Abstract][Full Text] [Related]
12. The Potentiation of Anti-Tumor Immunity by Tumor Abolition with Alpha Particles, Protons, or Carbon Ion Radiation and Its Enforcement by Combination with Immunoadjuvants or Inhibitors of Immune Suppressor Cells and Checkpoint Molecules. Keisari Y; Kelson I Cells; 2021 Jan; 10(2):. PubMed ID: 33503958 [TBL] [Abstract][Full Text] [Related]
13. Endogenous TLR2 ligand embedded in the catalytic region of human cysteinyl-tRNA synthetase 1. Cho S; Kim SB; Lee Y; Song EC; Kim U; Kim HY; Suh JH; Goughnour PC; Kim Y; Yoon I; Shin NY; Kim D; Kim IK; Kang CY; Jang SY; Kim MH; Kim S J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461342 [TBL] [Abstract][Full Text] [Related]
14. Nanotechnology-based photoimmunological therapies for cancer. Li Y; Li X; Zhou F; Doughty A; Hoover AR; Nordquist RE; Chen WR Cancer Lett; 2019 Feb; 442():429-438. PubMed ID: 30476523 [TBL] [Abstract][Full Text] [Related]
15. The differences in immunoadjuvant mechanisms of TLR3 and TLR4 agonists on the level of antigen-presenting cells during immunization with recombinant adenovirus vector. Lebedeva E; Bagaev A; Pichugin A; Chulkina M; Lysenko A; Tutykhina I; Shmarov M; Logunov D; Naroditsky B; Ataullakhanov R BMC Immunol; 2018 Jul; 19(1):26. PubMed ID: 30055563 [TBL] [Abstract][Full Text] [Related]
16. Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Tran TH; Tran TTP; Truong DH; Nguyen HT; Pham TT; Yong CS; Kim JO Acta Biomater; 2019 Aug; 94():82-96. PubMed ID: 31129358 [TBL] [Abstract][Full Text] [Related]
17. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. He M; Wang M; Xu T; Zhang M; Dai H; Wang C; Ding D; Zhong Z J Control Release; 2023 Apr; 356():623-648. PubMed ID: 36868519 [TBL] [Abstract][Full Text] [Related]
18. The quest for nanoparticle-powered vaccines in cancer immunotherapy. Sun Z; Zhao H; Ma L; Shi Y; Ji M; Sun X; Ma D; Zhou W; Huang T; Zhang D J Nanobiotechnology; 2024 Feb; 22(1):61. PubMed ID: 38355548 [TBL] [Abstract][Full Text] [Related]
19. Inhalable Polymeric Micro and Nano-immunoadjuvants for Developing Therapeutic Vaccines in the Treatment of Non-small Cell Lung Cancer. Dondulkar A; Akojwar N; Katta C; Khatri DK; Mehra NK; Singh SB; Madan J Curr Pharm Des; 2022; 28(5):395-409. PubMed ID: 34736378 [TBL] [Abstract][Full Text] [Related]