These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32777410)

  • 1. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel.
    Gupta S; Sharma A; Vasantha Kumar J; Sharma V; Gupta PK; Verma RS
    Int J Biol Macromol; 2020 Nov; 162():1358-1371. PubMed ID: 32777410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration.
    Deng X; Chen X; Geng F; Tang X; Li Z; Zhang J; Wang Y; Wang F; Zheng N; Wang P; Yu X; Hou S; Zhang W
    J Nanobiotechnology; 2021 Dec; 19(1):400. PubMed ID: 34856996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ
    Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold.
    P B S; S G; J P; Muthusamy S; R N; Krishnakumar GS; R S
    Int J Biol Macromol; 2022 Jan; 195():179-189. PubMed ID: 34863969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite Cellularized Structures Created from an Interpenetrating Polymer Network Hydrogel Reinforced by a 3D Woven Scaffold.
    Moffat KL; Goon K; Moutos FT; Estes BT; Oswald SJ; Zhao X; Guilak F
    Macromol Biosci; 2018 Oct; 18(10):e1800140. PubMed ID: 30040175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel.
    Choi Y; Kim C; Kim HS; Moon C; Lee KY
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112108. PubMed ID: 34543778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis.
    Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.
    Mohanty S; Alm M; Hemmingsen M; Dolatshahi-Pirouz A; Trifol J; Thomsen P; Dufva M; Wolff A; Emnéus J
    Biomacromolecules; 2016 Apr; 17(4):1321-9. PubMed ID: 26902925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model.
    Chen M; Feng Z; Guo W; Yang D; Gao S; Li Y; Shen S; Yuan Z; Huang B; Zhang Y; Wang M; Li X; Hao L; Peng J; Liu S; Zhou Y; Guo Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41626-41639. PubMed ID: 31596568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering.
    Gunes OC; Kara A; Baysan G; Bugra Husemoglu R; Akokay P; Ziylan Albayrak A; Ergur BU; Havitcioglu H
    J Biomater Appl; 2022 Oct; 37(4):683-697. PubMed ID: 35722881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parathyroid hormone (1-34) promotes the effects of 3D printed scaffold-seeded bone marrow mesenchymal stem cells on meniscus regeneration.
    Zhao W; Zou T; Cui H; Lv Y; Gao D; Ruan C; Zhang X; Zhang Y
    Stem Cell Res Ther; 2020 Jul; 11(1):328. PubMed ID: 32731897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay.
    Hafezi M; Khorasani SN; Khalili S; Neisiany RE
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124962. PubMed ID: 37207752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpenetrating Polymer Network HA/Alg-RGD Hydrogel: An Equilibrium of Macroscopic Stability and Microscopic Adaptability for 3D Cell Growth and Vascularization.
    Liu Y; Liu X; Zhang Y; Cao Y; Luo B; Wang Z; Pei R
    Biomacromolecules; 2023 Dec; 24(12):5977-5988. PubMed ID: 37939799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering.
    Abouzeid RE; Khiari R; Beneventi D; Dufresne A
    Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo.
    Yang J; Li Y; Liu Y; Li D; Zhang L; Wang Q; Xiao Y; Zhang X
    Acta Biomater; 2019 Jun; 91():159-172. PubMed ID: 31055122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous hyaluronic acid/sodium alginate composite scaffolds for human adipose-derived stem cells delivery.
    Son YJ; Yoon IS; Sung JH; Cho HJ; Chung SJ; Shim CK; Kim DD
    Int J Biol Macromol; 2013 Oct; 61():175-81. PubMed ID: 23817101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking.
    Hu X; Lu L; Xu C; Li X
    Int J Biol Macromol; 2015 Jan; 72():403-9. PubMed ID: 25193098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness memory of indirectly 3D-printed elastomer nanohybrid regulates chondrogenesis and osteogenesis of human mesenchymal stem cells.
    Wu L; Magaz A; Wang T; Liu C; Darbyshire A; Loizidou M; Emberton M; Birchall M; Song W
    Biomaterials; 2018 Dec; 186():64-79. PubMed ID: 30296596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.