BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32777682)

  • 41. One-Step Generation of Aqueous-Droplet-Filled Hydrogel Fibers as Organoid Carriers Using an All-in-Water Microfluidic System.
    Wang H; Liu H; Zhang X; Wang Y; Zhao M; Chen W; Qin J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3199-3208. PubMed ID: 33405509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lab-on-a-chip technologies for stem cell analysis.
    Ertl P; Sticker D; Charwat V; Kasper C; Lepperdinger G
    Trends Biotechnol; 2014 May; 32(5):245-53. PubMed ID: 24726257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regeneration of insulin-producing islets from dental pulp stem cells using a 3D culture system.
    Yagi Mendoza H; Yokoyama T; Tanaka T; Ii H; Yaegaki K
    Regen Med; 2018 Sep; 13(6):673-687. PubMed ID: 30028236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Patient-derived pancreas-on-a-chip to model cystic fibrosis-related disorders.
    Shik Mun K; Arora K; Huang Y; Yang F; Yarlagadda S; Ramananda Y; Abu-El-Haija M; Palermo JJ; Appakalai BN; Nathan JD; Naren AP
    Nat Commun; 2019 Jul; 10(1):3124. PubMed ID: 31311920
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Impact of islet alpha cell loss on insulin secretion].
    Li G; Ye L; Li J; Yang W; Lou J
    Zhonghua Yi Xue Za Zhi; 2002 Oct; 82(20):1427-31. PubMed ID: 12509929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells.
    Borg DJ; Welzel PB; Grimmer M; Friedrichs J; Weigelt M; Wilhelm C; Prewitz M; Stißel A; Hommel A; Kurth T; Freudenberg U; Bonifacio E; Werner C
    Acta Biomater; 2016 Oct; 44():178-87. PubMed ID: 27506126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.
    Dak P; Ebrahimi A; Swaminathan V; Duarte-Guevara C; Bashir R; Alam MA
    Biosensors (Basel); 2016 Apr; 6(2):14. PubMed ID: 27089377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic devices for disease modeling in muscle tissue.
    Smoak MM; Pearce HA; Mikos AG
    Biomaterials; 2019 Apr; 198():250-258. PubMed ID: 30193908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin.
    Perrier R; Pirog A; Jaffredo M; Gaitan J; Catargi B; Renaud S; Raoux M; Lang J
    Biosens Bioelectron; 2018 Oct; 117():253-259. PubMed ID: 29909196
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chapter 4: Combining microfluidics and quantitative fluorescence microscopy to examine pancreatic islet molecular physiology.
    Rocheleau JV; Piston DW
    Methods Cell Biol; 2008; 89():71-92. PubMed ID: 19118673
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synchronization of pancreatic islets by periodic or non-periodic muscarinic agonist pulse trains.
    Adablah JE; Vinson R; Roper MG; Bertram R
    PLoS One; 2019; 14(2):e0211832. PubMed ID: 30726280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Research highlights: Microtechnologies for engineering the cellular environment.
    Tseng P; Kunze A; Kittur H; Di Carlo D
    Lab Chip; 2014 Apr; 14(7):1226-9. PubMed ID: 24557413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic analysis of bone marrow mesenchymal stem cells migrating to pancreatic islets using coculture microfluidic chips: An accelerated migrating rate and better survival of pancreatic islets were revealed.
    Lin P; Chen L; Li D; Yang N; Sun Y; Xu Y
    Neuro Endocrinol Lett; 2009; 30(2):204-8. PubMed ID: 19675523
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lab-on-a-chip systems for photodynamic therapy investigations.
    Chudy M; Tokarska K; Jastrzębska E; Bułka M; Drozdek S; Lamch Ł; Wilk KA; Brzózka Z
    Biosens Bioelectron; 2018 Mar; 101():37-51. PubMed ID: 29035761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling.
    Li X; Brooks JC; Hu J; Ford KI; Easley CJ
    Lab Chip; 2017 Jan; 17(2):341-349. PubMed ID: 27990542
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endocrine pancreas engineered using porcine islets and partial pancreatic scaffolds.
    Katsuki Y; Yagi H; Okitsu T; Kitago M; Tajima K; Kadota Y; Hibi T; Abe Y; Shinoda M; Itano O; Takeuchi S; Kitagawa Y
    Pancreatology; 2016; 16(5):922-30. PubMed ID: 27350058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regenerative medicine of pancreatic islets.
    Arutyunyan IV; Fatkhudinov TK; Makarov AV; Elchaninov AV; Sukhikh GT
    World J Gastroenterol; 2020 Jun; 26(22):2948-2966. PubMed ID: 32587441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.