These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32777682)

  • 61. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.
    Bose B; Katikireddy KR; Shenoy PS
    Vitam Horm; 2014; 95():223-48. PubMed ID: 24559920
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Foundation for Engineering a Pancreatic Islet Niche.
    Patel SN; Mathews CE; Chandler R; Stabler CL
    Front Endocrinol (Lausanne); 2022; 13():881525. PubMed ID: 35600597
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers.
    Wu J; Dong M; Santos S; Rigatto C; Liu Y; Lin F
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258216
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prospective pathways of green graphene-based lab-on-chip devices: the pursuit toward sustainability.
    Sengupta J; Hussain CM
    Mikrochim Acta; 2022 Apr; 189(5):177. PubMed ID: 35381890
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells.
    Jun Y; Kang AR; Lee JS; Park SJ; Lee DY; Moon SH; Lee SH
    Biomaterials; 2014 Jun; 35(17):4815-26. PubMed ID: 24636217
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities.
    Castiello FR; Heileman K; Tabrizian M
    Lab Chip; 2016 Feb; 16(3):409-31. PubMed ID: 26732665
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluating Vascularization of Heterotopic Islet Constructs for Type 1 Diabetes Using an In Vitro Platform.
    Bowles AC; Ishahak MM; Glover SJ; Correa D; Agarwal A
    Integr Biol (Camb); 2019 Nov; 11(8):331-341. PubMed ID: 31724717
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Clarifying intact 3D tissues on a microfluidic chip for high-throughput structural analysis.
    Chen YY; Silva PN; Syed AM; Sindhwani S; Rocheleau JV; Chan WC
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14915-14920. PubMed ID: 27956625
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pancreatic islet (of Langerhans) revisited.
    Mandarim-de-Lacerda CA
    Histol Histopathol; 2019 Sep; 34(9):985-993. PubMed ID: 31020988
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deformability-based microfluidic separation of pancreatic islets from exocrine acinar tissue for transplant applications.
    Varhue WB; Langman L; Kelly-Goss M; Lataillade M; Brayman KL; Peirce-Cottler S; Swami NS
    Lab Chip; 2017 Oct; 17(21):3682-3691. PubMed ID: 28975176
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Role of islet amyloid in type 2 diabetes mellitus.
    Höppener JW; Lips CJ
    Int J Biochem Cell Biol; 2006; 38(5-6):726-36. PubMed ID: 16459127
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment.
    Dinnyes A; Schnur A; Muenthaisong S; Bartenstein P; Burcez CT; Burton N; Cyran C; Gianello P; Kemter E; Nemeth G; Nicotra F; Prepost E; Qiu Y; Russo L; Wirth A; Wolf E; Ziegler S; Kobolak J
    Cell Prolif; 2020 May; 53(5):e12785. PubMed ID: 32339373
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells.
    Dishinger JF; Kennedy RT
    Anal Chem; 2007 Feb; 79(3):947-54. PubMed ID: 17263320
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Stem cell applications in diabetes.
    Noguchi H
    J Stem Cells; 2012; 7(4):229-44. PubMed ID: 24196798
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Functional tissue engineering of the liver and islets.
    Ohashi K; Okano T
    Anat Rec (Hoboken); 2014 Jan; 297(1):73-82. PubMed ID: 24343912
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pancreatic islet dysfunction in type 2 diabetes: a rational target for incretin-based therapies.
    Meece J
    Curr Med Res Opin; 2007 Apr; 23(4):933-44. PubMed ID: 17407650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.