These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32777713)

  • 1. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change.
    Pincebourde S; Woods HA
    Curr Opin Insect Sci; 2020 Oct; 41():63-70. PubMed ID: 32777713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity.
    Pincebourde S; Suppo C
    Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-Scale Microclimatic Variation Can Shape the Responses of Organisms to Global Change in Both Natural and Urban Environments.
    Pincebourde S; Murdock CC; Vickers M; Sears MW
    Integr Comp Biol; 2016 Jul; 56(1):45-61. PubMed ID: 27107292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forest microclimates and climate change: Importance, drivers and future research agenda.
    De Frenne P; Lenoir J; Luoto M; Scheffers BR; Zellweger F; Aalto J; Ashcroft MB; Christiansen DM; Decocq G; De Pauw K; Govaert S; Greiser C; Gril E; Hampe A; Jucker T; Klinges DH; Koelemeijer IA; Lembrechts JJ; Marrec R; Meeussen C; Ogée J; Tyystjärvi V; Vangansbeke P; Hylander K
    Glob Chang Biol; 2021 Jun; 27(11):2279-2297. PubMed ID: 33725415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change.
    Woods HA; Dillon ME; Pincebourde S
    J Therm Biol; 2015 Dec; 54():86-97. PubMed ID: 26615730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microclimatic challenges in global change biology.
    Potter KA; Arthur Woods H; Pincebourde S
    Glob Chang Biol; 2013 Oct; 19(10):2932-9. PubMed ID: 23681970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models.
    Ma G; Ma CS
    Curr Opin Insect Sci; 2022 Feb; 49():15-21. PubMed ID: 34728406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot and bothered: The role of behaviour and microclimates in buffering species from rising temperatures.
    Senior RA
    J Anim Ecol; 2020 Nov; 89(11):2392-2396. PubMed ID: 33460111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tropical forests are thermally buffered despite intensive selective logging.
    Senior RA; Hill JK; Benedick S; Edwards DP
    Glob Chang Biol; 2018 Mar; 24(3):1267-1278. PubMed ID: 29052295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microhabitats reduce animal's exposure to climate extremes.
    Scheffers BR; Edwards DP; Diesmos A; Williams SE; Evans TA
    Glob Chang Biol; 2014 Feb; 20(2):495-503. PubMed ID: 24132984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cool microrefugia accumulate and conserve biodiversity under climate change.
    Nadeau CP; Giacomazzo A; Urban MC
    Glob Chang Biol; 2022 May; 28(10):3222-3235. PubMed ID: 35226784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate heterogeneity modulates impact of warming on tropical insects.
    Bonebrake TC; Deutsch CA
    Ecology; 2012 Mar; 93(3):449-55. PubMed ID: 22624199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Within-patch and edge microclimates vary over a growing season and are amplified during a heatwave: Consequences for ectothermic insects.
    Gols R; Ojeda-Prieto LM; Li K; van der Putten WH; Harvey JA
    J Therm Biol; 2021 Jul; 99():103006. PubMed ID: 34420636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of biologically relevant microclimates in habitat suitability assessments.
    Varner J; Dearing MD
    PLoS One; 2014; 9(8):e104648. PubMed ID: 25115894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates.
    von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P
    Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using warming tolerances to predict understory plant responses to climate change.
    Wei L; Sanczuk P; De Pauw K; Caron MM; Selvi F; Hedwall PO; Brunet J; Cousins SAO; Plue J; Spicher F; Gasperini C; Iacopetti G; Orczewska A; Uria-Diez J; Lenoir J; Vangansbeke P; De Frenne P
    Glob Chang Biol; 2024 Jan; 30(1):e17064. PubMed ID: 38273565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic models for predicting insect responses to climate change.
    Maino JL; Kong JD; Hoffmann AA; Barton MG; Kearney MR
    Curr Opin Insect Sci; 2016 Oct; 17():81-86. PubMed ID: 27720078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microhabitat conditions remedy heat stress effects on insect activity.
    Terlau JF; Brose U; Eisenhauer N; Amyntas A; Boy T; Dyer A; Gebler A; Hof C; Liu T; Scherber C; Schlägel UE; Schmidt A; Hirt MR
    Glob Chang Biol; 2023 Jul; 29(13):3747-3758. PubMed ID: 37186484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microclimate-based macrophysiology: implications for insects in a warming world.
    Duffy GA; Coetzee BW; Janion-Scheepers C; Chown SL
    Curr Opin Insect Sci; 2015 Oct; 11():84-89. PubMed ID: 28285764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes.
    Jucker T; Hardwick SR; Both S; Elias DMO; Ewers RM; Milodowski DT; Swinfield T; Coomes DA
    Glob Chang Biol; 2018 Nov; 24(11):5243-5258. PubMed ID: 30246358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.