These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32777713)

  • 41. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world.
    Stoks R; Verheyen J; Van Dievel M; Tüzün N
    Curr Opin Insect Sci; 2017 Oct; 23():35-42. PubMed ID: 29129280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extended phenotypes: buffers or amplifiers of climate change?
    Woods HA; Pincebourde S; Dillon ME; Terblanche JS
    Trends Ecol Evol; 2021 Oct; 36(10):889-898. PubMed ID: 34147289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-scale responses to warming in an experimental insect metacommunity.
    Grainger TN; Gilbert B
    Glob Chang Biol; 2017 Dec; 23(12):5151-5163. PubMed ID: 28556493
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Narrow safety margin in the phyllosphere during thermal extremes.
    Pincebourde S; Casas J
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5588-5596. PubMed ID: 30782803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 46. When insect pests build their own thermal niche: The hot nest of the pine processionary moth.
    Poitou L; Robinet C; Suppo C; Rousselet J; Laparie M; Pincebourde S
    J Therm Biol; 2021 May; 98():102947. PubMed ID: 34016364
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High elevation insect communities face shifting ecological and evolutionary landscapes.
    Shah AA; Dillon ME; Hotaling S; Woods HA
    Curr Opin Insect Sci; 2020 Oct; 41():1-6. PubMed ID: 32553896
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microclimate and resource quality determine resource use in a range-expanding herbivore.
    Stewart JE; Maclean IMD; Edney AJ; Bridle J; Wilson RJ
    Biol Lett; 2021 Aug; 17(8):20210175. PubMed ID: 34343435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tropical amphibians in shifting thermal landscapes under land-use and climate change.
    Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA
    Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The vulnerability of developing embryos to simulated climate warming differs between sympatric desert lizards.
    Ma L; Sun BJ; Li SR; Hao X; Bi JH; Du WG
    J Exp Zool A Ecol Integr Physiol; 2018 Apr; 329(4-5):252-261. PubMed ID: 29806241
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia.
    Hannah L; Flint L; Syphard AD; Moritz MA; Buckley LB; McCullough IM
    Trends Ecol Evol; 2014 Jul; 29(7):390-7. PubMed ID: 24875589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-term microclimate study of a peatland in Central Europe to understand microrefugia.
    Słowińska S; Słowiński M; Marcisz K; Lamentowicz M
    Int J Biometeorol; 2022 Apr; 66(4):817-832. PubMed ID: 35113230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microclimates hold the key to spatial forest planning under climate change: Cyanolichens in temperate rainforest.
    Ellis CJ; Eaton S
    Glob Chang Biol; 2021 May; 27(9):1915-1926. PubMed ID: 33421251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Habitat associations of species show consistent but weak responses to climate.
    Suggitt AJ; Stefanescu C; Páramo F; Oliver T; Anderson BJ; Hill JK; Roy DB; Brereton T; Thomas CD
    Biol Lett; 2012 Aug; 8(4):590-3. PubMed ID: 22491762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cooler performance breadth in a viviparous skink relative to its oviparous congener.
    Landry Yuan F; Pickett EJ; Bonebrake TC
    J Therm Biol; 2016 Oct; 61():106-114. PubMed ID: 27712651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world?
    Ferguson LV; Adamo SA
    J Exp Biol; 2023 Feb; 226(4):. PubMed ID: 36825944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microclimatic performance of a free-air warming and CO2 enrichment experiment in windy Wyoming, USA.
    LeCain D; Smith D; Morgan J; Kimball BA; Pendall E; Miglietta F
    PLoS One; 2015; 10(2):e0116834. PubMed ID: 25658313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Opportunities for behavioral rescue under rapid environmental change.
    Fey SB; Vasseur DA; Alujević K; Kroeker KJ; Logan ML; O'Connor MI; Rudolf VHW; DeLong JP; Peacor S; Selden RL; Sih A; Clusella-Trullas S
    Glob Chang Biol; 2019 Sep; 25(9):3110-3120. PubMed ID: 31148329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reading the Leaves' Palm: Leaf Traits and Herbivory along the Microclimatic Gradient of Forest Layers.
    Stiegel S; Entling MH; Mantilla-Contreras J
    PLoS One; 2017; 12(1):e0169741. PubMed ID: 28099483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.