These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32777713)

  • 61. Microclimate Data Improve Predictions of Insect Abundance Models Based on Calibrated Spatiotemporal Temperatures.
    Rebaudo F; Faye E; Dangles O
    Front Physiol; 2016; 7():139. PubMed ID: 27148077
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Research Progress and Hotspot Evolution Analysis of Landscape Microclimate: Visual Analysis Based on CNKI and WOS.
    Xu H; Lin X; Shi K; Lin S; Zheng G; Wang Q; Dong J; Wang M
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429831
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The impact of climate change measured at relevant spatial scales: new hope for tropical lizards.
    Logan ML; Huynh RK; Precious RA; Calsbeek RG
    Glob Chang Biol; 2013 Oct; 19(10):3093-102. PubMed ID: 23661358
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns.
    Harvey JA; Heinen R; Gols R; Thakur MP
    Glob Chang Biol; 2020 Dec; 26(12):6685-6701. PubMed ID: 33006246
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.
    Pincebourde S; Sinoquet H; Combes D; Casas J
    J Anim Ecol; 2007 May; 76(3):424-38. PubMed ID: 17439460
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A call to insect scientists: challenges and opportunities of managing insect communities under climate change.
    Hellmann JJ; Grundel R; Hoving C; Schuurman GW
    Curr Opin Insect Sci; 2016 Oct; 17():92-97. PubMed ID: 27720080
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Source of environmental data and warming tolerance estimation in six species of North American larval anurans.
    Katzenberger M; Hammond J; Tejedo M; Relyea R
    J Therm Biol; 2018 Aug; 76():171-178. PubMed ID: 30143292
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mangrove microclimates alter seedling dynamics at the range edge.
    Devaney JL; Lehmann M; Feller IC; Parker JD
    Ecology; 2017 Oct; 98(10):2513-2520. PubMed ID: 28779524
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Physiological hygiene principles in developing special clothing applicable to the conditions of thermally neutral and warming microclimates].
    Raĭkhman SP; Rimskaia LM
    Gig Sanit; 1988 Feb; (2):19-22. PubMed ID: 3371668
    [No Abstract]   [Full Text] [Related]  

  • 70. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions.
    Jamieson MA; Trowbridge AM; Raffa KF; Lindroth RL
    Plant Physiol; 2012 Dec; 160(4):1719-27. PubMed ID: 23043082
    [No Abstract]   [Full Text] [Related]  

  • 71. Upscaling Microclimatic Conditions into Body Temperature Distributions of Ectotherms.
    Rubalcaba JG; Gouveia SF; Olalla-Tárraga MA
    Am Nat; 2019 May; 193(5):677-687. PubMed ID: 31002566
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thermal variability alters the impact of climate warming on consumer-resource systems.
    Fey SB; Vasseur DA
    Ecology; 2016 Jul; 97(7):1690-1699. PubMed ID: 27859173
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bridging the gap between microclimate and microrefugia: A bottom-up approach reveals strong climatic and biological offsets.
    Finocchiaro M; Médail F; Saatkamp A; Diadema K; Pavon D; Meineri E
    Glob Chang Biol; 2023 Feb; 29(4):1024-1036. PubMed ID: 36383061
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The evolution of insect body coloration under changing climates.
    Clusella-Trullas S; Nielsen M
    Curr Opin Insect Sci; 2020 Oct; 41():25-32. PubMed ID: 32629405
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diversification of forest management regimes secures tree microhabitats and bird abundance under climate change.
    Augustynczik ALD; Asbeck T; Basile M; Bauhus J; Storch I; Mikusiński G; Yousefpour R; Hanewinkel M
    Sci Total Environ; 2019 Feb; 650(Pt 2):2717-2730. PubMed ID: 30296777
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microgeography, Not Just Latitude, Drives Climate Overlap on Mountains from Tropical to Polar Ecosystems.
    Klinges DH; Scheffers BR
    Am Nat; 2021 Jan; 197(1):75-92. PubMed ID: 33417520
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Heat seekers: A tropical nocturnal lizard uses behavioral thermoregulation to exploit rare microclimates at night.
    Nordberg EJ; Schwarzkopf L
    J Therm Biol; 2019 May; 82():107-114. PubMed ID: 31128638
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.
    Fourcade Y; Ranius T; Öckinger E
    J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Respiratory control in aquatic insects dictates their vulnerability to global warming.
    Verberk WC; Bilton DT
    Biol Lett; 2013 Oct; 9(5):20130473. PubMed ID: 23925834
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatial heterogeneity of temperature across alpine boulder fields in New South Wales, Australia: multilevel modelling of drivers of microhabitat climate.
    Shi H; Paull D; Rayburg S
    Int J Biometeorol; 2016 Jul; 60(7):965-76. PubMed ID: 26511483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.