These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32777713)

  • 81. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress.
    Dong YW; Li XX; Choi FMP; Williams GA; Somero GN; Helmuth B
    Proc Biol Sci; 2017 May; 284(1854):. PubMed ID: 28469014
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Insects overshoot the expected upslope shift caused by climate warming.
    Bässler C; Hothorn T; Brandl R; Müller J
    PLoS One; 2013; 8(6):e65842. PubMed ID: 23762439
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Climate change and its effects on terrestrial insects and herbivory patterns.
    Cornelissen T
    Neotrop Entomol; 2011; 40(2):155-63. PubMed ID: 21584394
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The fingerprints of global climate change on insect populations.
    Boggs CL
    Curr Opin Insect Sci; 2016 Oct; 17():69-73. PubMed ID: 27720076
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Integrating within-species variation in thermal physiology into climate change ecology.
    Bennett S; Duarte CM; Marbà N; Wernberg T
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180550. PubMed ID: 31203756
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Stepping inside the niche: microclimate data are critical for accurate assessment of species' vulnerability to climate change.
    Storlie C; Merino-Viteri A; Phillips B; VanDerWal J; Welbergen J; Williams S
    Biol Lett; 2014 Sep; 10(9):. PubMed ID: 25252835
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cavity types and microclimate: implications for ecological, evolutionary, and conservation studies.
    Amat-Valero M; Calero-Torralbo MA; Václav R; Valera F
    Int J Biometeorol; 2014 Nov; 58(9):1983-94. PubMed ID: 24573376
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Woody-plant ecosystems under climate change and air pollution-response consistencies across zonobiomes?
    Matyssek R; Kozovits AR; Wieser G; King J; Rennenberg H
    Tree Physiol; 2017 Jun; 37(6):706-732. PubMed ID: 28338970
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Macro- and microclimatic interactions can drive variation in species' habitat associations.
    Pateman RM; Thomas CD; Hayward SA; Hill JK
    Glob Chang Biol; 2016 Feb; 22(2):556-66. PubMed ID: 26234897
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Evolutionary impacts of winter climate change on insects.
    Marshall KE; Gotthard K; Williams CM
    Curr Opin Insect Sci; 2020 Oct; 41():54-62. PubMed ID: 32711362
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States.
    Pyne MI; Poff NL
    Glob Chang Biol; 2017 Jan; 23(1):77-93. PubMed ID: 27429092
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Using insect natural history collections to study global change impacts: challenges and opportunities.
    Kharouba HM; Lewthwaite JMM; Guralnick R; Kerr JT; Vellend M
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455219
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect.
    Alford L; Tougeron K; Pierre JS; Burel F; van Baaren J
    Insect Sci; 2018 Oct; 25(5):905-915. PubMed ID: 28322022
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context.
    Iltis C; Tougeron K; Hance T; Louâpre P; Foray V
    Environ Microbiol; 2022 Jan; 24(1):18-29. PubMed ID: 34713541
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The role of tolerance variation in vulnerability forecasting of insects.
    Diamond SE; Yilmaz AR
    Curr Opin Insect Sci; 2018 Oct; 29():85-92. PubMed ID: 30551831
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Will climate change affect insect pheromonal communication?
    Boullis A; Detrain C; Francis F; Verheggen FJ
    Curr Opin Insect Sci; 2016 Oct; 17():87-91. PubMed ID: 27720079
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Facing the Heat: Thermoregulation and Behaviour of Lowland Species of a Cold-Dwelling Butterfly Genus, Erebia.
    Kleckova I; Klecka J
    PLoS One; 2016; 11(3):e0150393. PubMed ID: 27008409
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling.
    von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL
    PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States.
    Kautz M; Anthoni P; Meddens AJH; Pugh TAM; Arneth A
    Glob Chang Biol; 2018 May; 24(5):2079-2092. PubMed ID: 29105233
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.
    Xia J; Chen S; Wan S
    Sci Total Environ; 2010 Jun; 408(14):2807-16. PubMed ID: 20409574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.