These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 32777724)
1. High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes. Sobahi N; Han A Biosens Bioelectron; 2020 Oct; 166():112458. PubMed ID: 32777724 [TBL] [Abstract][Full Text] [Related]
2. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
3. Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems. Rapier CE; Jagadeesan S; Vatine GD; Ben-Yoav H Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194604 [TBL] [Abstract][Full Text] [Related]
4. Impedance spectroscopy-based cell/particle position detection in microfluidic systems. Wang H; Sobahi N; Han A Lab Chip; 2017 Mar; 17(7):1264-1269. PubMed ID: 28267168 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles. Yang D; Ai Y Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354 [TBL] [Abstract][Full Text] [Related]
6. Toward Microfluidic Label-Free Isolation and Enumeration of Circulating Tumor Cells from Blood Samples. Raillon C; Che J; Thill S; Duchamp M; Desbiolles BXE; Millet A; Sollier E; Renaud P Cytometry A; 2019 Oct; 95(10):1085-1095. PubMed ID: 31364817 [TBL] [Abstract][Full Text] [Related]
7. Cell density detection based on a microfluidic chip with two electrode pairs. Wang Y; Chen D; Guo X Biotechnol Lett; 2022 Nov; 44(11):1301-1311. PubMed ID: 36088497 [TBL] [Abstract][Full Text] [Related]
8. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. Wu G; Zhang Z; Du M; Wu D; Zhou J; Hao T; Xie X Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667197 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067 [TBL] [Abstract][Full Text] [Related]
10. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309 [TBL] [Abstract][Full Text] [Related]
11. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. Zhong J; Liang M; Ai Y Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Impedance Cytometer with Inertial Focusing and Liquid Electrodes for High-Throughput Cell Counting and Discrimination. Tang W; Tang D; Ni Z; Xiang N; Yi H Anal Chem; 2017 Mar; 89(5):3154-3161. PubMed ID: 28264567 [TBL] [Abstract][Full Text] [Related]
14. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Wang L; Flanagan LA; Monuki E; Jeon NL; Lee AP Lab Chip; 2007 Sep; 7(9):1114-20. PubMed ID: 17713608 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells. Rapier CE; Jagadeesan S; Vatine G; Ben-Yoav H Sci Rep; 2022 Feb; 12(1):3248. PubMed ID: 35228609 [TBL] [Abstract][Full Text] [Related]
16. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Nwankire CE; Venkatanarayanan A; Glennon T; Keyes TE; Forster RJ; Ducrée J Biosens Bioelectron; 2015 Jun; 68():382-389. PubMed ID: 25613813 [TBL] [Abstract][Full Text] [Related]
17. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639 [TBL] [Abstract][Full Text] [Related]
18. High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip. De Ninno A; Reale R; Giovinazzo A; Bertani FR; Businaro L; Bisegna P; Matteucci C; Caselli F Biosens Bioelectron; 2020 Feb; 150():111887. PubMed ID: 31780405 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic Impedance Biosensor Chips Using Sensing Layers Based on DNA-Based Self-Assembled Monolayers for Label-Free Detection of Proteins. Alsabbagh K; Hornung T; Voigt A; Sadir S; Rajabi T; Länge K Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33805676 [TBL] [Abstract][Full Text] [Related]
20. A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells. Mustafa A; Pedone E; Marucci L; Moschou D; Lorenzo MD Electrophoresis; 2022 Feb; 43(3):501-508. PubMed ID: 34717293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]