These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 32777748)
1. Effectiveness of thermal treatment on Pb recovery and Cl removal from sintering dust. Long H; Li H; Ma P; Zhou Z; Xie H; Yin S; Wang Y; Zhang L; Li S J Hazard Mater; 2021 Feb; 403():123595. PubMed ID: 32777748 [TBL] [Abstract][Full Text] [Related]
2. Recovery of lead and chlorine via thermal co-treatment of municipal solid waste incineration fly ash and lead-rich waste cathode-ray tubes: Analysis of chlorination volatilization mechanism. Huang J; Jin Y; Chu X; Shu Z; Ma X; Liu J J Hazard Mater; 2024 Jan; 462():132752. PubMed ID: 37866147 [TBL] [Abstract][Full Text] [Related]
3. A combined kinetic and thermodynamic approach for interpreting the complex interactions during chloride volatilization of heavy metals in municipal solid waste fly ash. Kurashima K; Matsuda K; Kumagai S; Kameda T; Saito Y; Yoshioka T Waste Manag; 2019 Mar; 87():204-217. PubMed ID: 31109519 [TBL] [Abstract][Full Text] [Related]
4. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization. Xing Z; Yang H; Xue X; Jiang P Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688 [TBL] [Abstract][Full Text] [Related]
5. Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents. Chan CC; Kirk DW J Hazard Mater; 1999 Jan; 64(1):75-89. PubMed ID: 10337394 [TBL] [Abstract][Full Text] [Related]
6. [Chlorination transformation and volatilization of heavy metals in fly ash from the incineration during the disposal process with higher temperature]. Liu JY; Sun SY Huan Jing Ke Xue; 2012 Sep; 33(9):3279-87. PubMed ID: 23243893 [TBL] [Abstract][Full Text] [Related]
7. Novel pathway of stabilized Cu Xi Y; Li F; Shen W; Li X; Zhang P; Zhu N; Wu P; Dang Z J Hazard Mater; 2024 Jul; 473():134656. PubMed ID: 38776817 [TBL] [Abstract][Full Text] [Related]
8. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Batonneau Y; Bremard C; Gengembre L; Laureyns J; Le Maguer A; Le Maguer D; Perdrix E; Sobanska S Environ Sci Technol; 2004 Oct; 38(20):5281-9. PubMed ID: 15543727 [TBL] [Abstract][Full Text] [Related]
9. A green process for the conversion of hazardous sintering dust into K Wang Q; Ma X; Wang S; Cao Z; Hua Z; Zhong H J Environ Manage; 2023 Jan; 326(Pt A):116676. PubMed ID: 36368205 [TBL] [Abstract][Full Text] [Related]
10. Basic properties of sintering dust from iron and steel plant and potassium recovery. Zhan G; Guo Z J Environ Sci (China); 2013 Jun; 25(6):1226-34. PubMed ID: 24191613 [TBL] [Abstract][Full Text] [Related]
11. Selective removal of zinc and lead from electric arc furnace dust by chlorination-evaporation reactions. Hamann C; Piehl P; Weingart E; Stolle D; Al-Sabbagh D; Ostermann M; Auer G; Adam C J Hazard Mater; 2024 Mar; 465():133421. PubMed ID: 38211523 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment. Wang SJ; He PJ; Shao LM; Zhang H Chemosphere; 2016 Oct; 161():242-250. PubMed ID: 27434254 [TBL] [Abstract][Full Text] [Related]
13. Ceramic tiles with black pigment made from stainless steel plant dust: Physical properties and long-term leaching behavior of heavy metals. Zhu R; Ma G; Cai Y; Chen Y; Yang T; Duan B; Xue Z J Air Waste Manag Assoc; 2016 Apr; 66(4):402-11. PubMed ID: 26757095 [TBL] [Abstract][Full Text] [Related]
14. Microwave treatment of electric arc furnace dust with PVC: dielectric characterization and pyrolysis-leaching. Al-Harahsheh M; Kingman S; Al-Makhadmah L; Hamilton IE J Hazard Mater; 2014 Jun; 274():87-97. PubMed ID: 24769846 [TBL] [Abstract][Full Text] [Related]
15. Stabilisation of Cr(VI) in stainless steel plant dust through sintering using silica-rich clay. Ma G; Garbers-Craig AM J Hazard Mater; 2009 Sep; 169(1-3):210-6. PubMed ID: 19406572 [TBL] [Abstract][Full Text] [Related]
16. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction. Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal removal from MSS fly ash by thermal and chlorination treatments. Liu J; Chen J; Huang L Sci Rep; 2015 Nov; 5():17270. PubMed ID: 26602592 [TBL] [Abstract][Full Text] [Related]
18. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry. Quijorna N; de Pedro M; Romero M; Andrés A J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287 [TBL] [Abstract][Full Text] [Related]
19. Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms. He Y; Wu P; Xiao W; Li G; Yi J; He Y; Chen C; Ding P; Duan Y PLoS One; 2019; 14(3):e0213377. PubMed ID: 30917141 [TBL] [Abstract][Full Text] [Related]
20. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. Han R; Zou W; Zhang Z; Shi J; Yang J J Hazard Mater; 2006 Sep; 137(1):384-95. PubMed ID: 16603312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]