BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32778141)

  • 21. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution.
    Jiang Z; Tang H; Ventura M; Cardone MF; Marques-Bonet T; She X; Pevzner PA; Eichler EE
    Nat Genet; 2007 Nov; 39(11):1361-8. PubMed ID: 17922013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Serial segmental duplications during primate evolution result in complex human genome architecture.
    Stankiewicz P; Shaw CJ; Withers M; Inoue K; Lupski JR
    Genome Res; 2004 Nov; 14(11):2209-20. PubMed ID: 15520286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A burst of segmental duplications in the genome of the African great ape ancestor.
    Marques-Bonet T; Kidd JM; Ventura M; Graves TA; Cheng Z; Hillier LW; Jiang Z; Baker C; Malfavon-Borja R; Fulton LA; Alkan C; Aksay G; Girirajan S; Siswara P; Chen L; Cardone MF; Navarro A; Mardis ER; Wilson RK; Eichler EE
    Nature; 2009 Feb; 457(7231):877-81. PubMed ID: 19212409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary dynamics of segmental duplications from human Y-chromosomal euchromatin/heterochromatin transition regions.
    Kirsch S; Münch C; Jiang Z; Cheng Z; Chen L; Batz C; Eichler EE; Schempp W
    Genome Res; 2008 Jul; 18(7):1030-42. PubMed ID: 18445620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosome 6 phylogeny in primates and centromere repositioning.
    Eder V; Ventura M; Ianigro M; Teti M; Rocchi M; Archidiacono N
    Mol Biol Evol; 2003 Sep; 20(9):1506-12. PubMed ID: 12832646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex genomic rearrangements lead to novel primate gene function.
    Ciccarelli FD; von Mering C; Suyama M; Harrington ED; Izaurralde E; Bork P
    Genome Res; 2005 Mar; 15(3):343-51. PubMed ID: 15710750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolutionary origin of human subtelomeric homologies--or where the ends begin.
    Martin CL; Wong A; Gross A; Chung J; Fantes JA; Ledbetter DH
    Am J Hum Genet; 2002 Apr; 70(4):972-84. PubMed ID: 11875757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hominoid fission of chromosome 14/15 and the role of segmental duplications.
    Giannuzzi G; Pazienza M; Huddleston J; Antonacci F; Malig M; Vives L; Eichler EE; Ventura M
    Genome Res; 2013 Nov; 23(11):1763-73. PubMed ID: 24077392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel microRNA families expanded in the human genome.
    Du ZQ; Yang CX; Rothschild MF; Ross JW
    BMC Genomics; 2013 Feb; 14():98. PubMed ID: 23402294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hotspots of mammalian chromosomal evolution.
    Bailey JA; Baertsch R; Kent WJ; Haussler D; Eichler EE
    Genome Biol; 2004; 5(4):R23. PubMed ID: 15059256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence in situ hybridization to chromosomes as a tool to understand human and primate genome evolution.
    Wienberg J
    Cytogenet Genome Res; 2005; 108(1-3):139-60. PubMed ID: 15545725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular diversity and phenotypic pleiotropy of ancient genomic regulatory loci derived from human endogenous retrovirus type H (HERVH) promoter LTR7 and HERVK promoter LTR5_Hs and their contemporary impacts on pathophysiology of Modern Humans.
    Glinsky GV
    Mol Genet Genomics; 2022 Nov; 297(6):1711-1740. PubMed ID: 36121513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PhaseDancer: a novel targeted assembler of segmental duplications unravels the complexity of the human chromosome 2 fusion going from 48 to 46 chromosomes in hominin evolution.
    Poszewiecka B; Gogolewski K; Karolak JA; Stankiewicz P; Gambin A
    Genome Biol; 2023 Sep; 24(1):205. PubMed ID: 37697406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene structure variation in segmental duplication block C of human chromosome 7q 11.23 during primate evolution.
    Kim YJ; Ahn K; Gim JA; Oh MH; Han K; Kim HS
    Gene; 2015 Dec; 573(2):285-95. PubMed ID: 26196062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lineage-specific gene duplication and loss in human and great ape evolution.
    Fortna A; Kim Y; MacLaren E; Marshall K; Hahn G; Meltesen L; Brenton M; Hink R; Burgers S; Hernandez-Boussard T; Karimpour-Fard A; Glueck D; McGavran L; Berry R; Pollack J; Sikela JM
    PLoS Biol; 2004 Jul; 2(7):E207. PubMed ID: 15252450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and evolution of the novel gene family FAM90A in primates originated by multiple duplication and rearrangement events.
    Bosch N; Cáceres M; Cardone MF; Carreras A; Ballana E; Rocchi M; Armengol L; Estivill X
    Hum Mol Genet; 2007 Nov; 16(21):2572-82. PubMed ID: 17684299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Punctuated duplication seeding events during the evolution of human chromosome 2p11.
    Horvath JE; Gulden CL; Vallente RU; Eichler MY; Ventura M; McPherson JD; Graves TA; Wilson RK; Schwartz S; Rocchi M; Eichler EE
    Genome Res; 2005 Jul; 15(7):914-27. PubMed ID: 15965031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Birth of 'human-specific' genes during primate evolution.
    Nahon JL
    Genetica; 2003 Jul; 118(2-3):193-208. PubMed ID: 12868609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes.
    Hamilton AT; Huntley S; Tran-Gyamfi M; Baggott DM; Gordon L; Stubbs L
    Genome Res; 2006 May; 16(5):584-94. PubMed ID: 16606703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes.
    Yu YH; Lin YW; Yu JF; Schempp W; Yen PH
    BMC Evol Biol; 2008 Mar; 8():96. PubMed ID: 18366765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.