These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32778290)

  • 1. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: Transport modeling and pore radius estimation.
    Taheri E; Hadi S; Amin MM; Ebrahimi A; Fatehizadeh A; Aminabhavi TM
    J Environ Manage; 2020 Oct; 271():111005. PubMed ID: 32778290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study.
    Rajendran RM; Garg S; Bajpai S
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13886-13899. PubMed ID: 33205270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling.
    Nayak V; Cuhorka J; Mikulášek P
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of pH on Atenolol/Nanofiltration Membranes Affinity.
    Soares EV; Giacobbo A; Rodrigues MAS; de Pinho MN; Bernardes AM
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel positively charged membrane based on polyamide thin-film composite made by cross-linking for nanofiltration.
    Akbari A; Fakharshakeri Z; Mojallali Rostami SM
    Water Sci Technol; 2016; 73(4):776-89. PubMed ID: 26901720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-flux TFN nanofiltration membranes incorporated with Camphor-Al
    Kotp YH
    Chemosphere; 2021 Feb; 265():128999. PubMed ID: 33302199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field-influenced nanofiltration membrane blended by CS-EDTA-mGO as multi-functionality green modifier to enhance nanofiltration performance, efficient removal of Na
    Salahshoor Z; Shahbazi A; Maddah S
    Chemosphere; 2021 Sep; 278():130379. PubMed ID: 33838426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.
    Hidalgo AM; León G; Gómez M; Murcia MD; Bernal MD; Ortega S
    Environ Technol; 2014; 35(9-12):1175-81. PubMed ID: 24701913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atenolol removal by nanofiltration: a case-specific mass transfer correlation.
    Giacobbo A; Soares EV; Bernardes AM; Rosa MJ; de Pinho MN
    Water Sci Technol; 2020 Jan; 81(2):210-216. PubMed ID: 32333654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of feed water pH and membrane material on nanofiltration of perfluorohexanoic acid in aqueous solution.
    Zeng C; Tanaka S; Suzuki Y; Fujii S
    Chemosphere; 2017 Sep; 183():599-604. PubMed ID: 28575703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of Spiegler⁻Kedem and Steric Hindrance Pore Models for Analyzing Nanofiltration Membrane Performance for Smart Water Production.
    Nair RR; Protasova E; Strand S; Bilstad T
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30200672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of the retention of uncharged molecules with nanofiltration.
    Van der Bruggen B; Vandecasteele C
    Water Res; 2002 Mar; 36(5):1360-8. PubMed ID: 11902791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance.
    Xiao F; Hu X; Chen Y; Zhang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47390-47403. PubMed ID: 31729858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of nanofiltration and reverse osmosis membranes to the salty and polluted surface water.
    Koyuncu I; Yazgan M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(7):1321-33. PubMed ID: 11545356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.