These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 32778679)
1. Identification of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis. Tang S; Wang X; Deng T; Ge H; Xiao X Sci Rep; 2020 Aug; 10(1):13468. PubMed ID: 32778679 [TBL] [Abstract][Full Text] [Related]
2. Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches. Cao H; Rao X; Jia J; Yan T; Li D Hereditas; 2022 Sep; 159(1):36. PubMed ID: 36154667 [TBL] [Abstract][Full Text] [Related]
3. Identification of co-expressed central genes and transcription factors in acute myocardial infarction and diabetic nephropathy. Li B; Zhao X; Xie W; Hong Z; Cao Y; Zhang Y; Ding Y BMC Med Genomics; 2024 May; 17(1):134. PubMed ID: 38764052 [TBL] [Abstract][Full Text] [Related]
4. Bioinformatics analysis of genes related to iron death in diabetic nephropathy through network and pathway levels based approaches. Hu Y; Liu S; Liu W; Zhang Z; Liu Y; Sun D; Zhang M; Fang J PLoS One; 2021; 16(11):e0259436. PubMed ID: 34735495 [TBL] [Abstract][Full Text] [Related]
5. Construction and Bioinformatics Analysis of the miRNA-mRNA Regulatory Network in Diabetic Nephropathy. Li Y; Xu Y; Hou Y; Li R J Healthc Eng; 2021; 2021():8161701. PubMed ID: 34840704 [TBL] [Abstract][Full Text] [Related]
6. Investigation of mechanisms of mesenchymal stem cells for treatment of diabetic nephropathy via construction of a miRNA-TF-mRNA network. Yang H; Zhang X; Xin G Ren Fail; 2018 Nov; 40(1):136-145. PubMed ID: 29532746 [TBL] [Abstract][Full Text] [Related]
7. Both Peripheral Blood and Urinary miR-195-5p, miR-192-3p, miR-328-5p and Their Target Genes PPM1A, RAB1A and BRSK1 May Be Potential Biomarkers for Membranous Nephropathy. Zhou G; Zhang X; Wang W; Zhang W; Wang H; Xin G Med Sci Monit; 2019 Mar; 25():1903-1916. PubMed ID: 30865617 [TBL] [Abstract][Full Text] [Related]
8. Identification of fibronectin 1 (FN1) and complement component 3 (C3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis. Wang Y; Zhao M; Zhang Y Bioengineered; 2021 Dec; 12(1):5386-5401. PubMed ID: 34424825 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm. Gholaminejad A; Fathalipour M; Roointan A BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202 [TBL] [Abstract][Full Text] [Related]
10. Construction of a TF-miRNA-mRNA Regulatory Network for Diabetic Nephropathy. Dong F; Zheng L; Yang G Arch Esp Urol; 2024 Jan; 77(1):104-112. PubMed ID: 38374020 [TBL] [Abstract][Full Text] [Related]
11. Identification of Transcriptional Markers and microRNA-mRNA Regulatory Networks in Colon Cancer by Integrative Analysis of mRNA and microRNA Expression Profiles in Colon Tumor Stroma. Uddin MN; Li M; Wang X Cells; 2019 Sep; 8(9):. PubMed ID: 31500382 [TBL] [Abstract][Full Text] [Related]
12. Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses. Song F; Xuan Z; Yang X; Ye X; Pan Z; Fang Q J Cell Biochem; 2020 Mar; 121(3):2690-2703. PubMed ID: 31692035 [TBL] [Abstract][Full Text] [Related]
13. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696 [TBL] [Abstract][Full Text] [Related]
14. Exploring the shared molecular mechanism of microvascular and macrovascular complications in diabetes: Seeking the hub of circulatory system injury. Yuchen C; Hejia Z; Fanke M; Qixin D; Liyang C; Xi G; Yanxia C; Xiongyi Y; Zhuohang X; Guoguo Y; Min F Front Endocrinol (Lausanne); 2023; 14():1032015. PubMed ID: 36755923 [TBL] [Abstract][Full Text] [Related]
15. Identification of Hub Genes Involved in Tubulointerstitial Injury in Diabetic Nephropathy by Bioinformatics Analysis and Experiment Verification. Yang J; Peng L; Tian Y; Tang W; Peng L; Ning J; Li D; Peng Y J Immunol Res; 2022; 2022():7907708. PubMed ID: 35991124 [TBL] [Abstract][Full Text] [Related]
16. Identification of Key Candidate Genes and Chemical Perturbagens in Diabetic Kidney Disease Using Integrated Bioinformatics Analysis. Gao Z; S A; Li XM; Li XL; Sui LN Front Endocrinol (Lausanne); 2021; 12():721202. PubMed ID: 34557161 [TBL] [Abstract][Full Text] [Related]
17. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Yang F; Cui Z; Deng H; Wang Y; Chen Y; Li H; Yuan L Medicine (Baltimore); 2019 Jul; 98(27):e16225. PubMed ID: 31277135 [TBL] [Abstract][Full Text] [Related]
18. Identification of a circRNA-miRNA-mRNA network to explore the effects of circRNAs on pathogenesis and treatment of spinal cord injury. Peng P; Zhang B; Huang J; Xing C; Liu W; Sun C; Guo W; Yao S; Ruan W; Ning G; Kong X; Feng S Life Sci; 2020 Sep; 257():118039. PubMed ID: 32621925 [TBL] [Abstract][Full Text] [Related]
19. Apoptosis and NETotic cell death affect diabetic nephropathy independently: An study integrative study encompassing bioinformatics, machine learning, and experimental validation. Cai H; Zeng Y; Luo D; Shao Y; Liu M; Wu J; Gao X; Zheng J; Zhou L; Liu F Genomics; 2024 Jul; 116(4):110879. PubMed ID: 38851464 [TBL] [Abstract][Full Text] [Related]
20. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation. Lou W; Chen J; Ding B; Chen D; Zheng H; Jiang D; Xu L; Bao C; Cao G; Fan W J Transl Med; 2018 Sep; 16(1):266. PubMed ID: 30268144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]