BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32778715)

  • 1. Identification of flux checkpoints in a metabolic pathway through white-box, grey-box and black-box modeling approaches.
    Lo-Thong O; Charton P; Cadet XF; Grondin-Perez B; Saavedra E; Damour C; Cadet F
    Sci Rep; 2020 Aug; 10(1):13446. PubMed ID: 32778715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of metabolic pathway modeling.
    Moreno-Sánchez R; Encalada R; Marín-Hernández A; Saavedra E
    FEBS J; 2008 Jul; 275(13):3454-69. PubMed ID: 18510554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica.
    Saavedra E; Marín-Hernández A; Encalada R; Olivos A; Mendoza-Hernández G; Moreno-Sánchez R
    FEBS J; 2007 Sep; 274(18):4922-40. PubMed ID: 17824961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis.
    Saavedra E; Encalada R; Pineda E; Jasso-Chávez R; Moreno-Sánchez R
    FEBS J; 2005 Apr; 272(7):1767-83. PubMed ID: 15794763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling.
    Saavedra E; González-Chávez Z; Moreno-Sánchez R; Michels PAM
    Curr Med Chem; 2019; 26(36):6652-6671. PubMed ID: 30221599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control and regulation of the pyrophosphate-dependent glucose metabolism in Entamoeba histolytica.
    Saavedra E; Encalada R; Vázquez C; Olivos-García A; Michels PAM; Moreno-Sánchez R
    Mol Biochem Parasitol; 2019 Apr; 229():75-87. PubMed ID: 30772421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo identification of the steps that control energy metabolism and survival of Entamoeba histolytica.
    Pineda E; Encalada R; Vázquez C; Néquiz M; Olivos-García A; Moreno-Sánchez R; Saavedra E
    FEBS J; 2015 Jan; 282(2):318-31. PubMed ID: 25350227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing methods for metabolic network analysis and an application to metabolic engineering.
    Tomar N; De RK
    Gene; 2013 May; 521(1):1-14. PubMed ID: 23537990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flux Control in Glycolysis Varies Across the Tree of Life.
    Orlenko A; Hermansen RA; Liberles DA
    J Mol Evol; 2016 Mar; 82(2-3):146-61. PubMed ID: 26920685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Control Analysis for Drug Target Prioritization in Trypanosomatids.
    González-Chávez Z; Vázquez C; Moreno-Sánchez R; Saavedra E
    Methods Mol Biol; 2020; 2116():689-718. PubMed ID: 32221950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 9-pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation by Penicillium chrysogenum.
    Tang W; Deshmukh AT; Haringa C; Wang G; van Gulik W; van Winden W; Reuss M; Heijnen JJ; Xia J; Chu J; Noorman HJ
    Biotechnol Bioeng; 2017 Aug; 114(8):1733-1743. PubMed ID: 28322433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green pathways: Metabolic network analysis of plant systems.
    Dersch LM; Beckers V; Wittmann C
    Metab Eng; 2016 Mar; 34():1-24. PubMed ID: 26704307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of isotope labeling experiments for metabolic flux analysis.
    Nargund S; Sriram G
    Methods Mol Biol; 2014; 1083():109-31. PubMed ID: 24218213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry.
    Vogel K; Greinert T; Reichard M; Held C; Harms H; Maskow T
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33172189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-pathway model, a novel approach to simulate multiple metabolic states by reaction network-based model - Application to amino acid depletion in CHO cell culture.
    Hagrot E; Oddsdóttir HÆ; Hosta JG; Jacobsen EW; Chotteau V
    J Biotechnol; 2017 Oct; 259():235-247. PubMed ID: 28689014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells.
    Mulukutla BC; Yongky A; Grimm S; Daoutidis P; Hu WS
    PLoS One; 2015; 10(3):e0121561. PubMed ID: 25806512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and mathematical approaches to modeling plant metabolic networks.
    Rios-Estepa R; Lange BM
    Phytochemistry; 2007; 68(16-18):2351-74. PubMed ID: 17561179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.