These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32778833)

  • 41. Current outcomes when optimizing 'standard' sample preparation for single-particle cryo-EM.
    Carragher B; Cheng Y; Frost A; Glaeser RM; Lander GC; Nogales E; Wang HW
    J Microsc; 2019 Oct; 276(1):39-45. PubMed ID: 31553060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Peel-Blot Technique: A Cryo-EM Sample Preparation Method to Separate Single Layers from Multi-Layered or Concentrated Biological Samples.
    Johnson MC; Grant AJ; Schmidt-Krey I
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35848828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Benchmarking the ideal sample thickness in cryo-EM.
    Martynowycz MW; Clabbers MTB; Unge J; Hattne J; Gonen T
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34873060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparing Better Samples for Cryo-Electron Microscopy: Biochemical Challenges Do Not End with Isolation and Purification.
    Glaeser RM
    Annu Rev Biochem; 2021 Jun; 90():451-474. PubMed ID: 33556280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time-resolved cryo-electron microscopy: Recent progress.
    Frank J
    J Struct Biol; 2017 Dec; 200(3):303-306. PubMed ID: 28625887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast Small-Scale Membrane Protein Purification and Grid Preparation for Single-Particle Electron Microscopy.
    Bärland N; Perez C
    Methods Mol Biol; 2020; 2127():275-282. PubMed ID: 32112328
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved sample dispersion in cryo-EM using "perpetually-hydrated" graphene oxide flakes.
    Cheung M; Adaniya H; Cassidy C; Yamashita M; Li KL; Taba S; Shintake T
    J Struct Biol; 2018 Oct; 204(1):75-79. PubMed ID: 30030043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of Monolayer Graphene and Its Derivative in Cryo-EM Sample Preparation.
    Wu K; Wu D; Zhu L; Wu Y
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-particle cryo-electron microscopy of macromolecular complexes.
    Skiniotis G; Southworth DR
    Microscopy (Oxf); 2016 Feb; 65(1):9-22. PubMed ID: 26611544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification.
    Ravelli RBG; Nijpels FJT; Henderikx RJM; Weissenberger G; Thewessem S; Gijsbers A; Beulen BWAMM; López-Iglesias C; Peters PJ
    Nat Commun; 2020 May; 11(1):2563. PubMed ID: 32444637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparing Frozen-Hydrated Protein-Nucleic Acid Assemblies for High-Resolution Cryo-EM Imaging.
    Goswami P; Locke J; Costa A
    Methods Mol Biol; 2018; 1814():287-296. PubMed ID: 29956239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy.
    Lu Z; Shaikh TR; Barnard D; Meng X; Mohamed H; Yassin A; Mannella CA; Agrawal RK; Lu TM; Wagenknecht T
    J Struct Biol; 2009 Dec; 168(3):388-95. PubMed ID: 19683579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of Micro-Patterned Chip with Controlled Thickness for High-Throughput Cryogenic Electron Microscopy.
    Kang MH; Lee M; Kang S; Park J
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532267
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sample preparation and image registration for correlative cryo-FM and cryo-FIB-SEM of plunge-frozen mammalian cells.
    Scher N; Rechav K; Paul-Gilloteaux P; Avinoam O
    STAR Protoc; 2022 Mar; 3(1):101142. PubMed ID: 35199027
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy.
    Carlson DB; Evans JE
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21673645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional structure determination of protein complexes using matrix-landing mass spectrometry.
    Westphall MS; Lee KW; Salome AZ; Lodge JM; Grant T; Coon JJ
    Nat Commun; 2022 Apr; 13(1):2276. PubMed ID: 35478194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GraFix: sample preparation for single-particle electron cryomicroscopy.
    Kastner B; Fischer N; Golas MM; Sander B; Dube P; Boehringer D; Hartmuth K; Deckert J; Hauer F; Wolf E; Uchtenhagen H; Urlaub H; Herzog F; Peters JM; Poerschke D; Lührmann R; Stark H
    Nat Methods; 2008 Jan; 5(1):53-5. PubMed ID: 18157137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deformed grids for single-particle cryo-electron microscopy of specimens exhibiting a preferred orientation.
    Liu Y; Meng X; Liu Z
    J Struct Biol; 2013 Jun; 182(3):255-8. PubMed ID: 23537848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy.
    Makihara M; Watanabe T; Usukura E; Kaibuchi K; Narita A; Tanaka N; Usukura J
    Microscopy (Oxf); 2016 Dec; 65(6):488-498. PubMed ID: 27587510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of filamentous proteins for electron microscopy visualization and reconstruction.
    Matyszewski M; Sohn J
    Methods Enzymol; 2019; 625():167-176. PubMed ID: 31455526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.