These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3277887)

  • 1. Potential mechanisms mediating postprandial renal hyperemia and hyperfiltration.
    Premen AJ
    FASEB J; 1988 Feb; 2(2):131-7. PubMed ID: 3277887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-mediated elevations in renal hemodynamics: existence of a hepato-renal axis?
    Premen AJ
    Med Hypotheses; 1986 Mar; 19(3):295-309. PubMed ID: 3515133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postprandial regulation of renal hemodynamics: role of pancreatic glucagon.
    Premen AJ; Hall JE; Smith MJ
    Am J Physiol; 1985 May; 248(5 Pt 2):F656-62. PubMed ID: 3993789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential role of a liver-derived factor in mediating renal response to protein.
    Alvestrand A; Zimmerman L; Bergström J
    Blood Purif; 1988; 6(5):276-84. PubMed ID: 3052508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the liver during glucagon-mediated increases in canine renal hemodynamics.
    Premen AJ
    Am J Physiol; 1985 Aug; 249(2 Pt 2):F319-22. PubMed ID: 4025558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive Doppler assessment of human postprandial renal blood flow and cardiac output.
    Avasthi PS; Greene ER; Voyles WF
    Am J Physiol; 1987 Jun; 252(6 Pt 2):F1167-74. PubMed ID: 3591956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phosphorus restriction on renal response to oral and intravenous protein loads in rats.
    Kraus ES; Cheng L; Sikorski I; Spector DA
    Am J Physiol; 1993 Apr; 264(4 Pt 2):F752-9. PubMed ID: 8476079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of angiotensin II on the renal microvasculature.
    Arendshorst WJ; Brännström K; Ruan X
    J Am Soc Nephrol; 1999 Jan; 10 Suppl 11():S149-61. PubMed ID: 9892156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a rice meal on renal hemodynamics and excretory functions in normal subjects.
    Uemasu J; Hori T; Uemasu Y; Kawasaki H
    Nephron; 1991; 57(2):187-91. PubMed ID: 2020346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide in the renal hemodynamic response to a meat meal.
    Salazar FJ; Alberola A; Nakamura T; Granger JP
    Am J Physiol; 1994 Oct; 267(4 Pt 2):R1050-5. PubMed ID: 7943415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glomerular hyperfiltration in essential hypertension: hormonal aspects.
    Regolisti G; Buzio C; Cavatorta A; De Martin L; Cavalli R; Perazzoli F; Coghi P; Cabassi A; Pucci F; Borghetti A
    Acta Biomed Ateneo Parmense; 1992; 63(1-2):163-73. PubMed ID: 1340661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postprandial renal haemodynamic effect of lixisenatide vs once-daily insulin-glulisine in patients with type 2 diabetes on insulin-glargine: An 8-week, randomised, open-label trial.
    Tonneijck L; Muskiet MHA; Smits MM; Hoekstra T; Kramer MHH; Danser AHJ; Diamant M; Joles JA; van Raalte DH
    Diabetes Obes Metab; 2017 Dec; 19(12):1669-1680. PubMed ID: 28449402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat.
    Fernández-Repollet E; Tapia E; Martínez-Maldonado M
    J Clin Invest; 1987 Oct; 80(4):1045-9. PubMed ID: 3308957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea.
    Bankir L; Roussel R; Bouby N
    Am J Physiol Renal Physiol; 2015 Jul; 309(1):F2-23. PubMed ID: 25925260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin-converting enzyme 2 mediates hyperfiltration associated with diabetes.
    Tikellis C; Brown R; Head GA; Cooper ME; Thomas MC
    Am J Physiol Renal Physiol; 2014 Apr; 306(7):F773-80. PubMed ID: 24477684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pathophysiologic mechanisms of early changes in renal hemodynamics in diabetes mellitus].
    Komers R
    Cas Lek Cesk; 1996 Mar; 135(5):135-9. PubMed ID: 8681353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of chronic treatment with octreotide versus octreotide plus midodrine on systemic hemodynamics and renal hemodynamics and function in nonazotemic cirrhotic patients with ascites.
    Kalambokis G; Economou M; Fotopoulos A; Al Bokharhii J; Pappas C; Katsaraki A; Tsianos EV
    Am J Gastroenterol; 2005 Apr; 100(4):879-85. PubMed ID: 15784036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.
    Hallow KM; Gebremichael Y; Helmlinger G; Vallon V
    Am J Physiol Renal Physiol; 2017 May; 312(5):F819-F835. PubMed ID: 28148531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal hemodynamic response to intravenous and oral amino acids in animals.
    Lang F; Ottl I; Häussinger D; Deetjen P; Ahloulay M; Bankir L
    Semin Nephrol; 1995 Sep; 15(5):415-8. PubMed ID: 8525143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splanchnic and renal hemodynamic responses to intraportal infusion of glucagon.
    Premen AJ
    Am J Physiol; 1987 Dec; 253(6 Pt 2):F1105-12. PubMed ID: 3425720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.