These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32778871)

  • 1. DeepATT: a hybrid category attention neural network for identifying functional effects of DNA sequences.
    Li J; Pu Y; Tang J; Zou Q; Guo F
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32778871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences.
    Quang D; Xie X
    Nucleic Acids Res; 2016 Jun; 44(11):e107. PubMed ID: 27084946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepFormer: a hybrid network based on convolutional neural network and flow-attention mechanism for identifying the function of DNA sequences.
    Yao Z; Zhang W; Song P; Hu Y; Liu J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36917472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Quantification of DNA Sequences Using Evolutionary Information Based on Deep Learning.
    Tayara H; Chong KT
    Cells; 2019 Dec; 8(12):. PubMed ID: 31847308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information.
    Onimaru K; Nishimura O; Kuraku S
    PLoS One; 2020; 15(7):e0235748. PubMed ID: 32701977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the prediction of DNA-protein binding by integrating multi-scale dense convolutional network with fault-tolerant coding.
    Yin YH; Shen LC; Jiang Y; Gao S; Song J; Yu DJ
    Anal Biochem; 2022 Nov; 656():114878. PubMed ID: 36049552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Machine Translation with Deep Attention.
    Zhang B; Xiong D; Su J
    IEEE Trans Pattern Anal Mach Intell; 2020 Jan; 42(1):154-163. PubMed ID: 30334781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RicENN: Prediction of Rice Enhancers with Neural Network Based on DNA Sequences.
    Gao Y; Chen Y; Feng H; Zhang Y; Yue Z
    Interdiscip Sci; 2022 Jun; 14(2):555-565. PubMed ID: 35190950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism.
    Hong Z; Zeng X; Wei L; Liu X
    Bioinformatics; 2020 Feb; 36(4):1037-1043. PubMed ID: 31588505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iEnhancer-RD: Identification of enhancers and their strength using RKPK features and deep neural networks.
    Yang H; Wang S; Xia X
    Anal Biochem; 2021 Oct; 630():114318. PubMed ID: 34364858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition.
    Aladhadh S; Almatroodi SA; Habib S; Alabdulatif A; Khattak SU; Islam M
    Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NeuronMotif: Deciphering cis-regulatory codes by layer-wise demixing of deep neural networks.
    Wei Z; Hua K; Wei L; Ma S; Jiang R; Zhang X; Li Y; Wong WH; Wang X
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2216698120. PubMed ID: 37023129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sequence-based two-layer predictor for identifying enhancers and their strength through enhanced feature extraction.
    Amilpur S; Bhukya R
    J Bioinform Comput Biol; 2022 Apr; 20(2):2250005. PubMed ID: 35264081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models.
    Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV
    BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning and interpreting the gene regulatory grammar in a deep learning framework.
    Chen L; Capra JA
    PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey on deep learning in DNA/RNA motif mining.
    He Y; Shen Z; Zhang Q; Wang S; Huang DS
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33005921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpliceFinder: ab initio prediction of splice sites using convolutional neural network.
    Wang R; Wang Z; Wang J; Li S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CLCU-Net: Cross-level connected U-shaped network with selective feature aggregation attention module for brain tumor segmentation.
    Wang YL; Zhao ZJ; Hu SY; Chang FL
    Comput Methods Programs Biomed; 2021 Aug; 207():106154. PubMed ID: 34034031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.