These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32779262)

  • 1. A framework for pathway knowledge driven prioritization in genome-wide association studies.
    Biswas S; Pal S; Majumder PP; Bhattacharjee S
    Genet Epidemiol; 2020 Nov; 44(8):841-853. PubMed ID: 32779262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies.
    Rojo C; Zhang Q; Keleş S
    Genet Epidemiol; 2019 Oct; 43(7):742-760. PubMed ID: 31328826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering networks from genome-wide association studies via circular genomic permutation.
    Cabrera CP; Navarro P; Huffman JE; Wright AF; Hayward C; Campbell H; Wilson JF; Rudan I; Hastie ND; Vitart V; Haley CS
    G3 (Bethesda); 2012 Sep; 2(9):1067-75. PubMed ID: 22973544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. snpGeneSets: An R Package for Genome-Wide Study Annotation.
    Mei H; Li L; Jiang F; Simino J; Griswold M; Mosley T; Liu S
    G3 (Bethesda); 2016 Dec; 6(12):4087-4095. PubMed ID: 27807048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A knowledge-based weighting framework to boost the power of genome-wide association studies.
    Li MX; Sham PC; Cherny SS; Song YQ
    PLoS One; 2010 Dec; 5(12):e14480. PubMed ID: 21217833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
    Li Y; Kellis M
    Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MendelVar: gene prioritization at GWAS loci using phenotypic enrichment of Mendelian disease genes.
    Sobczyk MK; Gaunt TR; Paternoster L
    Bioinformatics; 2021 Apr; 37(1):1-8. PubMed ID: 33836063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle.
    Cai Z; Guldbrandtsen B; Lund MS; Sahana G
    Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation.
    Chung D; Yang C; Li C; Gelernter J; Zhao H
    PLoS Genet; 2014 Nov; 10(11):e1004787. PubMed ID: 25393678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving power of genome-wide association studies with weighted false discovery rate control and prioritized subset analysis.
    Lin WY; Lee WC
    PLoS One; 2012; 7(4):e33716. PubMed ID: 22496761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies.
    Lu Q; Powles RL; Wang Q; He BJ; Zhao H
    PLoS Genet; 2016 Apr; 12(4):e1005947. PubMed ID: 27058395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS.
    Merelli I; Calabria A; Cozzi P; Viti F; Mosca E; Milanesi L
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S9. PubMed ID: 23369106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TS: a powerful truncated test to detect novel disease associated genes using publicly available gWAS summary data.
    Zhang J; Guo X; Gonzales S; Yang J; Wang X
    BMC Bioinformatics; 2020 May; 21(1):172. PubMed ID: 32366212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating pathway analysis and genetics of gene expression for genome-wide association studies.
    Zhong H; Yang X; Kaplan LM; Molony C; Schadt EE
    Am J Hum Genet; 2010 Apr; 86(4):581-91. PubMed ID: 20346437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis.
    Uimari O; Rahmioglu N; Nyholt DR; Vincent K; Missmer SA; Becker C; Morris AP; Montgomery GW; Zondervan KT
    Hum Reprod; 2017 Apr; 32(4):780-793. PubMed ID: 28333195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical structural component model for pathway analysis of common variants.
    Jiang N; Lee S; Park T
    BMC Med Genomics; 2020 Feb; 13(Suppl 3):26. PubMed ID: 32093692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FunSPU: A versatile and adaptive multiple functional annotation-based association test of whole-genome sequencing data.
    Ma Y; Wei P
    PLoS Genet; 2019 Apr; 15(4):e1008081. PubMed ID: 31034468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes.
    Sookoian S; Gianotti TF; Schuman M; Pirola CJ
    Genet Med; 2009 May; 11(5):338-43. PubMed ID: 19346957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional annotation signatures of disease susceptibility loci improve SNP association analysis.
    Iversen ES; Lipton G; Clyde MA; Monteiro AN
    BMC Genomics; 2014 May; 15(1):398. PubMed ID: 24886216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.