These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3277955)

  • 1. Roles of the Escherichia coli heat shock sigma factor 32 in early and late gene expression of bacteriophage T4.
    Frazier MW; Mosig G
    J Bacteriol; 1988 Mar; 170(3):1384-8. PubMed ID: 3277955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bacteriophage T4 gene mrh whose product inhibits late T4 gene expression in an Escherichia coli rpoH (sigma 32) mutant.
    Frazier MW; Mosig G
    Gene; 1990 Mar; 88(1):7-14. PubMed ID: 1692800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of the heat shock regulon of Escherichia coli markedly increases production of bacterial viruses at high temperatures.
    Wiberg JS; Mowrey-McKee MF; Stevens EJ
    J Virol; 1988 Jan; 62(1):234-45. PubMed ID: 2446014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between the 32-kDa sigma factor levels and in vitro expression of Escherichia coli heat shock genes.
    Skelly S; Coleman T; Fu CF; Brot N; Weissbach H
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8365-9. PubMed ID: 3317406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32.
    Zhou YN; Kusukawa N; Erickson JW; Gross CA; Yura T
    J Bacteriol; 1988 Aug; 170(8):3640-9. PubMed ID: 2900239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of Escherichia coli mutation affecting the RNA polymerase sigma factor on phage T4 development].
    Zograf IuN
    Mol Biol (Mosk); 1982; 16(1):94-7. PubMed ID: 7040940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli.
    Grossman AD; Straus DB; Walter WA; Gross CA
    Genes Dev; 1987 Apr; 1(2):179-84. PubMed ID: 3315848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli.
    Tilly K; Erickson J; Sharma S; Georgopoulos C
    J Bacteriol; 1986 Dec; 168(3):1155-8. PubMed ID: 2430947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of rpoH (htpR) mutations of Escherichia coli: heat shock response in suhA revertants.
    Tobe T; Kusukawa N; Yura T
    J Bacteriol; 1987 Sep; 169(9):4128-34. PubMed ID: 3305481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival.
    Jenkins DE; Auger EA; Matin A
    J Bacteriol; 1991 Mar; 173(6):1992-6. PubMed ID: 2002001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli.
    Nagai H; Yuzawa H; Yura T
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10515-9. PubMed ID: 1961716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli.
    Yuzawa H; Nagai H; Mori H; Yura T
    Nucleic Acids Res; 1993 Nov; 21(23):5449-55. PubMed ID: 7505426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the heat shock response in E coli: involvement of positive and negative cis-acting elements in translation control of sigma 32 synthesis.
    Nagai H; Yuzawa H; Yura T
    Biochimie; 1991 Dec; 73(12):1473-9. PubMed ID: 1725259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of operon fusions in studies of the heat-shock response: effects of altered sigma 32 on heat-shock promoter function in Escherichia coli.
    Yano R; Imai M; Yura T
    Mol Gen Genet; 1987 Apr; 207(1):24-8. PubMed ID: 3299002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli.
    Dolan KM; Greenberg EP
    J Bacteriol; 1992 Aug; 174(15):5132-5. PubMed ID: 1352769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transmission of amber mutants in phage T4. V. Positive effect of heat shock proteins on the replication of amber mutants in gene 31].
    Nivinskas RG; Shalnene VIu
    Genetika; 1990 Feb; 26(2):197-205. PubMed ID: 2188877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, sequence, and expression of the temperature-dependent phage T4 capsid assembly gene 31.
    Nivinskas R; Black LW
    Gene; 1988 Dec; 73(1):251-7. PubMed ID: 3072258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.