These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Mechanism and stability investigation of a nozzle-free droplet-on-demand acoustic ejector. Ning Y; Zhang M; Zhang H; Duan X; Yuan Y; Liu B; Pang W Analyst; 2021 Sep; 146(18):5650-5657. PubMed ID: 34378558 [TBL] [Abstract][Full Text] [Related]
24. A micro-machined piezoelectric flexural-mode hydrophone with air backing: benefit of air backing for enhancing sensitivity. Lee H; Choi S; Moon W J Acoust Soc Am; 2010 Sep; 128(3):1033-44. PubMed ID: 20815440 [TBL] [Abstract][Full Text] [Related]
26. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. Ma Z; Collins DJ; Ai Y Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552 [TBL] [Abstract][Full Text] [Related]
27. Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor. Kim S; Nam H; Cha B; Park J; Sung HJ; Jeon JS Adv Sci (Weinh); 2022 Jun; 9(16):2105809. PubMed ID: 35686137 [TBL] [Abstract][Full Text] [Related]
28. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage. Koyama D; Takei H; Nakamura K; Ueha S IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1823-30. PubMed ID: 18986924 [TBL] [Abstract][Full Text] [Related]
29. Piezoelectric ceramic rectangular transducers in flexural vibration. Lin S IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):865-70. PubMed ID: 15301006 [TBL] [Abstract][Full Text] [Related]
30. Acoustofluidic separation of prolate and spherical micro-objects. Khan MS; Ali M; Lee SH; Jang KY; Lee SJ; Park J Microsyst Nanoeng; 2024; 10():6. PubMed ID: 38222472 [TBL] [Abstract][Full Text] [Related]
31. A localized surface acoustic wave applied spatiotemporally controllable chemical gradient generator. Liang J; Chen K; Xia Y; Gui J; Wu Z; Cui H; Wu Z; Liu W; Zhao X; Guo S Biomicrofluidics; 2020 Mar; 14(2):024106. PubMed ID: 32231760 [TBL] [Abstract][Full Text] [Related]
32. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc. Koyama D; Nakamura K IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1434-42. PubMed ID: 20529718 [TBL] [Abstract][Full Text] [Related]
33. Two-stage particle separation channel based on standing surface acoustic wave. Lv H; Chen X; Zhang Y; Wang X; Zeng X; Zhang D J Microsc; 2022 Apr; 286(1):42-54. PubMed ID: 35179787 [TBL] [Abstract][Full Text] [Related]
34. Dynamic response of an array of flexural plates in acoustic medium. Park KK; Khuri-Yakub BT J Acoust Soc Am; 2012 Oct; 132(4):2292-303. PubMed ID: 23039426 [TBL] [Abstract][Full Text] [Related]
35. Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. Xue H; Hu H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2092-6. PubMed ID: 18986906 [TBL] [Abstract][Full Text] [Related]
36. Vibration characteristics of a corrugated cylindrical shell piezoelectric transducer. Xu L; Chen M; Du H; Hu H; Hu Y; Fan H; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2502-8. PubMed ID: 19049930 [TBL] [Abstract][Full Text] [Related]
37. Time reversal of flexural waves in a beam at audible frequency. Francoeur D; Berry A J Acoust Soc Am; 2008 Aug; 124(2):1006-17. PubMed ID: 18681592 [TBL] [Abstract][Full Text] [Related]
38. An enhanced tilted-angle acoustic tweezer for mechanical phenotyping of cancer cells. Wang H; Boardman J; Zhang X; Sun C; Cai M; Wei J; Dong Z; Feng M; Liang D; Hu S; Qian Y; Dong S; Fu Y; Torun H; Clayton A; Wu Z; Xie Z; Yang X Anal Chim Acta; 2023 May; 1255():341120. PubMed ID: 37032048 [TBL] [Abstract][Full Text] [Related]
39. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles. Shields CW; Cruz DF; Ohiri KA; Yellen BB; Lopez GP J Vis Exp; 2016 Mar; (109):. PubMed ID: 27022681 [TBL] [Abstract][Full Text] [Related]
40. Increasing the modal density in plates for mono-element focusing in air. Etaix N; Dubois J; Fink M; Ing RK J Acoust Soc Am; 2013 Aug; 134(2):1049-54. PubMed ID: 23927104 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]