BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 32780693)

  • 1. The roles of microRNA in redox metabolism and exercise-mediated adaptation.
    Torma F; Gombos Z; Jokai M; Berkes I; Takeda M; Mimura T; Radak Z; Gyori F
    J Sport Health Sci; 2020 Sep; 9(5):405-414. PubMed ID: 32780693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling.
    Kolodziej F; McDonagh B; Burns N; Goljanek-Whysall K
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species.
    Niess AM; Simon P
    Front Biosci; 2007 Sep; 12():4826-38. PubMed ID: 17569613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox basis of exercise physiology.
    Margaritelis NV; Paschalis V; Theodorou AA; Kyparos A; Nikolaidis MG
    Redox Biol; 2020 Aug; 35():101499. PubMed ID: 32192916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox signaling in skeletal muscle: role of aging and exercise.
    Ji LL
    Adv Physiol Educ; 2015 Dec; 39(4):352-9. PubMed ID: 26628659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise.
    Mankowski RT; Anton SD; Buford TW; Leeuwenburgh C
    Med Sci Sports Exerc; 2015 Sep; 47(9):1857-68. PubMed ID: 25606815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species.
    Jackson MJ; McArdle A
    J Physiol; 2011 May; 589(Pt 9):2139-45. PubMed ID: 21320885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MitomiRs delineating the intracellular localization of microRNAs at mitochondria.
    Bandiera S; Matégot R; Girard M; Demongeot J; Henrion-Caude A
    Free Radic Biol Med; 2013 Sep; 64():12-9. PubMed ID: 23792138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle.
    Wang F; Wang X; Liu Y; Zhang Z
    Oxid Med Cell Longev; 2021; 2021():3846122. PubMed ID: 34630848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise.
    Jackson MJ
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2285-91. PubMed ID: 16321798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mitochondria in redox signaling of muscle homeostasis.
    Ji LL; Yeo D; Kang C; Zhang T
    J Sport Health Sci; 2020 Sep; 9(5):386-393. PubMed ID: 32780692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species are signalling molecules for skeletal muscle adaptation.
    Powers SK; Duarte J; Kavazis AN; Talbert EE
    Exp Physiol; 2010 Jan; 95(1):1-9. PubMed ID: 19880534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise-induced oxidative stress: Friend or foe?
    Powers SK; Deminice R; Ozdemir M; Yoshihara T; Bomkamp MP; Hyatt H
    J Sport Health Sci; 2020 Sep; 9(5):415-425. PubMed ID: 32380253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs in skeletal muscle biology and exercise adaptation.
    Kirby TJ; McCarthy JJ
    Free Radic Biol Med; 2013 Sep; 64():95-105. PubMed ID: 23872025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of oxidants and antioxidants during exercise: implications for muscle health.
    Gomez-Cabrera MC; Viña J; Ji LL
    Phys Sportsmed; 2009 Dec; 37(4):116-23. PubMed ID: 20048548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5195-207. PubMed ID: 27094017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.