These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 32780817)

  • 1. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
    Fukuma T
    Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy.
    Miyata K; Fukuma T
    Beilstein J Nanotechnol; 2018; 9():1844-1855. PubMed ID: 30013878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.
    Miyata K; Tracey J; Miyazawa K; Haapasilta V; Spijker P; Kawagoe Y; Foster AS; Tsukamoto K; Fukuma T
    Nano Lett; 2017 Jul; 17(7):4083-4089. PubMed ID: 28650174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy.
    Fukuma T; Yoshioka S; Asakawa H
    Rev Sci Instrum; 2011 Jul; 82(7):073707. PubMed ID: 21806189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces.
    Miyazawa K; Watkins M; Shluger AL; Fukuma T
    Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies.
    Fukuma T; Onishi K; Kobayashi N; Matsuki A; Asakawa H
    Nanotechnology; 2012 Apr; 23(13):135706. PubMed ID: 22421199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid.
    Akrami SM; Nakayachi H; Watanabe-Nakayama T; Asakawa H; Fukuma T
    Nanotechnology; 2014 Nov; 25(45):455701. PubMed ID: 25327221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atom-resolved analysis of an ionic KBr(001) crystal surface covered with a thin water layer by frequency modulation atomic force microscopy.
    Arai T; Koshioka M; Abe K; Tomitori M; Kokawa R; Ohta M; Yamada H; Kobayashi K; Oyabu N
    Langmuir; 2015 Apr; 31(13):3876-83. PubMed ID: 25790119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.
    Miyazawa K; Izumi H; Watanabe-Nakayama T; Asakawa H; Fukuma T
    Nanotechnology; 2015 Mar; 26(10):105707. PubMed ID: 25697199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wideband digital frequency detector with subtraction-based phase comparator for frequency modulation atomic force microscopy.
    Mitani Y; Kubo M; Muramoto K; Fukuma T
    Rev Sci Instrum; 2009 Aug; 80(8):083705. PubMed ID: 19725660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy.
    Yang CW; Hwang IS
    Nanotechnology; 2010 Feb; 21(6):065710. PubMed ID: 20057020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency noise in frequency modulation atomic force microscopy.
    Kobayashi K; Yamada H; Matsushige K
    Rev Sci Instrum; 2009 Apr; 80(4):043708. PubMed ID: 19405667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.
    Moreno C; Stetsovych O; Shimizu TK; Custance O
    Nano Lett; 2015 Apr; 15(4):2257-62. PubMed ID: 25756297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy.
    Asakawa H; Yoshioka S; Nishimura K; Fukuma T
    ACS Nano; 2012 Oct; 6(10):9013-20. PubMed ID: 23013290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled monolayers of sulfonate-terminated alkanethiols investigated by frequency modulation atomic force microscopy in liquid.
    Asakawa H; Inada N; Hirata K; Matsui S; Igarashi T; Oku N; Yoshikawa N; Fukuma T
    Nanotechnology; 2017 Nov; 28(45):455603. PubMed ID: 28876225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.