BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 32780871)

  • 1. Comparison of iterative parametric and indirect deep learning-based reconstruction methods in highly undersampled DCE-MR Imaging of the breast.
    Rastogi A; Yalavarthy PK
    Med Phys; 2020 Oct; 47(10):4838-4861. PubMed ID: 32780871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greybox: A hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data.
    Rastogi A; Yalavarthy PK
    Med Phys; 2024 Jan; ():. PubMed ID: 38214325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VTDCE-Net: A time invariant deep neural network for direct estimation of pharmacokinetic parameters from undersampled DCE MRI data.
    Rastogi A; Dutta A; Yalavarthy PK
    Med Phys; 2023 Mar; 50(3):1560-1572. PubMed ID: 36354289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
    Rastogi A; Yalavarthy PK
    Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy.
    Terpstra ML; Maspero M; d'Agata F; Stemkens B; Intven MPW; Lagendijk JJW; van den Berg CAT; Tijssen RHN
    Phys Med Biol; 2020 Aug; 65(15):155015. PubMed ID: 32408295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint arterial input function and tracer kinetic parameter estimation from undersampled dynamic contrast-enhanced MRI using a model consistency constraint.
    Guo Y; Lingala SG; Bliesener Y; Lebel RM; Zhu Y; Nayak KS
    Magn Reson Med; 2018 May; 79(5):2804-2815. PubMed ID: 28905411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI.
    Guo Y; Lingala SG; Zhu Y; Lebel RM; Nayak KS
    Magn Reson Med; 2017 Oct; 78(4):1566-1578. PubMed ID: 27859563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NPB-REC: A non-parametric Bayesian deep-learning approach for undersampled MRI reconstruction with uncertainty estimation.
    Khawaled S; Freiman M
    Artif Intell Med; 2024 Mar; 149():102798. PubMed ID: 38462289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling.
    Hong GQ; Wei YT; Morley WAW; Wan M; Mertens AJ; Su Y; Cheng HM
    Comput Med Imaging Graph; 2023 Jun; 106():102206. PubMed ID: 36857952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI.
    Dikaios N; Arridge S; Hamy V; Punwani S; Atkinson D
    Med Image Anal; 2014 Oct; 18(7):989-1001. PubMed ID: 24972377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep compressed sensing MRI via a gradient-enhanced fusion model.
    Dai Y; Wang C; Wang H
    Med Phys; 2023 Mar; 50(3):1390-1405. PubMed ID: 36695158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net.
    Le J; Tian Y; Mendes J; Wilson B; Ibrahim M; DiBella E; Adluru G
    Magn Reson Imaging; 2021 Nov; 83():178-188. PubMed ID: 34428512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps.
    Zhang J; Yi Z; Zhao Y; Xiao L; Hu J; Man C; Lau V; Su S; Chen F; Leong ATL; Wu EX
    Magn Reson Med; 2023 Jul; 90(1):280-294. PubMed ID: 37119514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly accelerated MR parametric mapping by undersampling the k-space and reducing the contrast number simultaneously with deep learning.
    Liu S; Li H; Liu Y; Cheng G; Yang G; Wang H; Zheng H; Liang D; Zhu Y
    Phys Med Biol; 2022 Sep; 67(18):. PubMed ID: 36001990
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast.
    Kim SG; Feng L; Grimm R; Freed M; Block KT; Sodickson DK; Moy L; Otazo R
    J Magn Reson Imaging; 2016 Jan; 43(1):261-9. PubMed ID: 26032976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease.
    Phair A; Fotaki A; Felsner L; Fletcher TJ; Qi H; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):101039. PubMed ID: 38521391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction.
    Qiu W; Li D; Jin X; Liu F; Sun B
    Magn Reson Imaging; 2020 Jul; 70():134-144. PubMed ID: 32353530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracer kinetic models as temporal constraints during brain tumor DCE-MRI reconstruction.
    Lingala SG; Guo Y; Bliesener Y; Zhu Y; Lebel RM; Law M; Nayak KS
    Med Phys; 2020 Jan; 47(1):37-51. PubMed ID: 31663134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.