These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32780914)

  • 1. Stimuli-Responsive Resorcin[4]arene Cavitands: Toward Visible-Light-Activated Molecular Grippers.
    García-López V; Zalibera M; Trapp N; Kuss-Petermann M; Wenger OS; Diederich F
    Chemistry; 2020 Sep; 26(50):11451-11461. PubMed ID: 32780914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Diederich F
    Acc Chem Res; 2014 Jul; 47(7):2096-105. PubMed ID: 24814219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding.
    Milić J; Zalibera M; Talaat D; Nomrowski J; Trapp N; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Diederich F
    Chemistry; 2018 Jan; 24(6):1431-1440. PubMed ID: 29251363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches.
    Milić J; Zalibera M; Pochorovski I; Trapp N; Nomrowski J; Neshchadin D; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Gescheidt G; Diederich F
    J Phys Chem Lett; 2016 Jul; 7(13):2470-7. PubMed ID: 27300355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational behavior of pyrazine-bridged and mixed-bridged cavitands: a general model for solvent effects on thermal "vase-kite" switching.
    Roncucci P; Pirondini L; Paderni G; Massera C; Dalcanale E; Azov VA; Diederich F
    Chemistry; 2006 Jun; 12(18):4775-84. PubMed ID: 16671048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-switchable resorcin[4]arene cavitands: molecular grippers.
    Pochorovski I; Ebert MO; Gisselbrecht JP; Boudon C; Schweizer WB; Diederich F
    J Am Chem Soc; 2012 Sep; 134(36):14702-5. PubMed ID: 22906195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of hydrogen-bond acceptors for redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Milić J; Kolarski D; Gropp C; Schweizer WB; Diederich F
    J Am Chem Soc; 2014 Mar; 136(10):3852-8. PubMed ID: 24568570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed-ligand complexes of ruthenium(II) containing new photoactive or electroactive ligands: synthesis, spectral characterization and DNA interactions.
    Ghosh T; Maiya BG; Samanta A; Shukla AD; Jose DA; Kumar DK; Das A
    J Biol Inorg Chem; 2005 Aug; 10(5):496-508. PubMed ID: 15981005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET studies on a series of BODIPY-dye-labeled switchable resorcin[4]arene cavitands.
    Pochorovski I; Breiten B; Schweizer WB; Diederich F
    Chemistry; 2010 Nov; 16(42):12590-602. PubMed ID: 20865704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Quest for Molecular Grippers: Photo-Electric Control of Molecular Gripping Machinery.
    Milić JV; Diederich F
    Chemistry; 2019 Jun; 25(36):8440-8452. PubMed ID: 31111578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, structure, and binding properties of lipophilic cavitands based on a calix[4]pyrrole-resorcinarene hybrid scaffold.
    Galán A; Escudero-Adán EC; Frontera A; Ballester P
    J Org Chem; 2014 Jun; 79(12):5545-57. PubMed ID: 24846099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fused donor-acceptor ligands in RuII chemistry: synthesis, electrochemistry and spectroscopy of [Ru(bpy)3-n(TTF-dppz)n](PF6)2.
    Goze C; Leiggener C; Liu SX; Sanguinet L; Levillain E; Hauser A; Decurtins S
    Chemphyschem; 2007 Jul; 8(10):1504-12. PubMed ID: 17533615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-catalyzed reversible conversion between chemical and electrical energy designed towards a sustainable society.
    Tanaka K
    Chem Rec; 2009; 9(3):169-86. PubMed ID: 19504503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent- and DNA-Controlled Phototriggered Linkage Isomerization in a Ruthenium Sulfoxide Complex Incorporating Dipyrido[3,2-a:2',3'-c]phenazine (dppz).
    Phapale D; Ghosh R; Das D
    Inorg Chem; 2017 Jun; 56(11):6310-6317. PubMed ID: 28537408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Overview of the Use of Ru(II) Polypyridyl Complexes as Photosensitizers in One-Photon and Two-Photon Photodynamic Therapy.
    Heinemann F; Karges J; Gasser G
    Acc Chem Res; 2017 Nov; 50(11):2727-2736. PubMed ID: 29058879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, structure, spectroscopic properties, and electrochemical oxidation of ruthenium(II) complexes Incorporating monocarboxylate bipyridine ligands.
    Nickita N; Belousoff MJ; Bhatt AI; Bond AM; Deacon GB; Gasser G; Spiccia L
    Inorg Chem; 2007 Oct; 46(21):8638-51. PubMed ID: 17880205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation.
    Gropp C; Quigley BL; Diederich F
    J Am Chem Soc; 2018 Feb; 140(8):2705-2717. PubMed ID: 29451782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodriven Multi-electron Storage in Disubstituted Ru(II) Dppz Analogues.
    Aslan JM; Boston DJ; MacDonnell FM
    Chemistry; 2015 Nov; 21(48):17314-23. PubMed ID: 26448144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium(II) complexes incorporating 2-(2'-pyridyl)pyrimidine-4-carboxylic acid.
    Nickita N; Gasser G; Pearson P; Belousoff MJ; Goh LY; Bond AM; Deacon GB; Spiccia L
    Inorg Chem; 2009 Jan; 48(1):68-81. PubMed ID: 19053847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual photophysical properties of a ruthenium(II) complex related to [Ru(bpy)2(dppz)]2+.
    Sun Y; Collins SN; Joyce LE; Turro C
    Inorg Chem; 2010 May; 49(9):4257-62. PubMed ID: 20353166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.