These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32780965)

  • 1. Exercise above the maximal lactate steady state does not elicit a
    Hill DW; McFarlin BK; Vingren JL
    Appl Physiol Nutr Metab; 2021 Feb; 46(2):133-140. PubMed ID: 32780965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1197-1203. PubMed ID: 27819154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing muscle V̇o
    Azevedo RA; Forot J; Millet GY; Murias JM
    J Appl Physiol (1985); 2022 Mar; 132(3):641-652. PubMed ID: 35112926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grey Zone: A Gap Between Heavy and Severe Exercise Domain.
    Ozkaya O; Balci GA; As H; Cabuk R; Norouzi M
    J Strength Cond Res; 2022 Jan; 36(1):113-120. PubMed ID: 32149880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is maximal lactate steady state during intermittent cycling different for active compared with passive recovery?
    Greco CC; Barbosa LF; Caritá RA; Denadai BS
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1147-52. PubMed ID: 23030656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state.
    Faude O; Hecksteden A; Hammes D; Schumacher F; Besenius E; Sperlich B; Meyer T
    Appl Physiol Nutr Metab; 2017 Feb; 42(2):142-147. PubMed ID: 28128633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An equation to predict the maximal lactate steady state from ramp-incremental exercise test data in cycling.
    Iannetta D; Fontana FY; Maturana FM; Inglis EC; Pogliaghi S; Keir DA; Murias JM
    J Sci Med Sport; 2018 Dec; 21(12):1274-1280. PubMed ID: 29803737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of oxygen uptake. Implications for exercise testing.
    Poole DC; Richardson RS
    Sports Med; 1997 Nov; 24(5):308-20. PubMed ID: 9368277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise.
    Dittrich N; de Lucas RD; Beneke R; Guglielmo LG
    Int J Sports Physiol Perform; 2014 Sep; 9(5):772-6. PubMed ID: 24235775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans.
    Burnley M; Doust JH; Carter H; Jones AM
    Exp Physiol; 2001 May; 86(3):417-25. PubMed ID: 11429659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.
    Zoladz JA; Duda K; Majerczak J
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):445-51. PubMed ID: 9562296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six weeks of aerobic training improves VO2max and MLSS but does not improve the time to fatigue at the MLSS.
    Mendes TT; Fonseca TR; Ramos GP; Wilke CF; Cabido CE; De Barros CL; Lima AM; Mortimer Lde A; de Carvalho MV; Teixeira MM; Lima NR; Garcia ES
    Eur J Appl Physiol; 2013 Apr; 113(4):965-73. PubMed ID: 23053123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VO2 Steady State at and Just Above Maximum Lactate Steady State Intensity.
    Bräuer EK; Smekal G
    Int J Sports Med; 2020 Aug; 41(9):574-581. PubMed ID: 32353881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of the change point in oxygen uptake during an incremental exercise test using recursive residuals: relationship to the plasma lactate accumulation and blood acid base balance.
    Zoladz JA; Szkutnik Z; Majerczak J; Duda K
    Eur J Appl Physiol Occup Physiol; 1998 Sep; 78(4):369-77. PubMed ID: 9754978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximal lactate steady state, respiratory compensation threshold and critical power.
    Dekerle J; Baron B; Dupont L; Vanvelcenaher J; Pelayo P
    Eur J Appl Physiol; 2003 May; 89(3-4):281-8. PubMed ID: 12736836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and performance-related consequences of exercising at and slightly above MLSS.
    Iannetta D; Inglis EC; Fullerton C; Passfield L; Murias JM
    Scand J Med Sci Sports; 2018 Dec; 28(12):2481-2493. PubMed ID: 30120803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood lactate diagnostics in exercise testing and training.
    Beneke R; Leithäuser RM; Ochentel O
    Int J Sports Physiol Perform; 2011 Mar; 6(1):8-24. PubMed ID: 21487146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time to exhaustion at intermittent maximal lactate steady state is longer than continuous cycling exercise.
    Grossl T; de Lucas RD; de Souza KM; Guglielmo LG
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1047-53. PubMed ID: 22891876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood lactate concentration at the maximal lactate steady state is not dependent on endurance capacity in healthy recreationally trained individuals.
    Smekal G; von Duvillard SP; Pokan R; Hofmann P; Braun WA; Arciero PJ; Tschan H; Wonisch M; Baron R; Bachl N
    Eur J Appl Physiol; 2012 Aug; 112(8):3079-86. PubMed ID: 22194004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal lactate steady state, critical power and EMG during cycling.
    Pringle JS; Jones AM
    Eur J Appl Physiol; 2002 Dec; 88(3):214-26. PubMed ID: 12458364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.