BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32781001)

  • 1. Dynamic analysis of 4E-BP1 phosphorylation in neurons with Tsc2 or Depdc5 knockout.
    Iffland PH; Barnes AE; Baybis M; Crino PB
    Exp Neurol; 2020 Dec; 334():113432. PubMed ID: 32781001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEPDC5 and NPRL3 modulate cell size, filopodial outgrowth, and localization of mTOR in neural progenitor cells and neurons.
    Iffland PH; Baybis M; Barnes AE; Leventer RJ; Lockhart PJ; Crino PB
    Neurobiol Dis; 2018 Jun; 114():184-193. PubMed ID: 29481864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
    Tee AR; Fingar DC; Manning BD; Kwiatkowski DJ; Cantley LC; Blenis J
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13571-6. PubMed ID: 12271141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling.
    Kaur S; Lal L; Sassano A; Majchrzak-Kita B; Srikanth M; Baker DP; Petroulakis E; Hay N; Sonenberg N; Fish EN; Platanias LC
    J Biol Chem; 2007 Jan; 282(3):1757-68. PubMed ID: 17114181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NPRL3 loss alters neuronal morphology, mTOR localization, cortical lamination and seizure threshold.
    Iffland PH; Everett ME; Cobb-Pitstick KM; Bowser LE; Barnes AE; Babus JK; Romanowski AJ; Baybis M; Elziny S; Puffenberger EG; Gonzaga-Jauregui C; Poulopoulos A; Carson VJ; Crino PB
    Brain; 2022 Nov; 145(11):3872-3885. PubMed ID: 35136953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses.
    Smith EM; Finn SG; Tee AR; Browne GJ; Proud CG
    J Biol Chem; 2005 May; 280(19):18717-27. PubMed ID: 15772076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Growth of TSC2-Null Cells by a PI3K/mTOR Inhibitor but Not by a Selective MNK1/2 Inhibitor.
    Evans JF; Rue RW; Mukhitov AR; Obraztsova K; Smith CJ; Krymskaya VP
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31878201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic mTORC1 inhibition rescues behavioral and biochemical deficits resulting from neuronal Depdc5 loss in mice.
    Yuskaitis CJ; Rossitto LA; Gurnani S; Bainbridge E; Poduri A; Sahin M
    Hum Mol Genet; 2019 Sep; 28(17):2952-2964. PubMed ID: 31174205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle-specific knockout of DEP domain containing 5 protein increases mTORC1 signaling, muscle cell hypertrophy, and mitochondrial respiration.
    Graber TG; Fry CS; Brightwell CR; Moro T; Maroto R; Bhattarai N; Porter C; Wakamiya M; Rasmussen BB
    J Biol Chem; 2019 Mar; 294(11):4091-4102. PubMed ID: 30635399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptotanshinone activates AMPK-TSC2 axis leading to inhibition of mTORC1 signaling in cancer cells.
    Chen W; Pan Y; Wang S; Liu Y; Chen G; Zhou L; Ni W; Wang A; Lu Y
    BMC Cancer; 2017 Jan; 17(1):34. PubMed ID: 28061838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility.
    Yuskaitis CJ; Jones BM; Wolfson RL; Super CE; Dhamne SC; Rotenberg A; Sabatini DM; Sahin M; Poduri A
    Neurobiol Dis; 2018 Mar; 111():91-101. PubMed ID: 29274432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
    Gordon BS; Kazi AA; Coleman CS; Dennis MD; Chau V; Jefferson LS; Kimball SR
    Cell Signal; 2014 Mar; 26(3):461-7. PubMed ID: 24316235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins.
    Wang X; Beugnet A; Murakami M; Yamanaka S; Proud CG
    Mol Cell Biol; 2005 Apr; 25(7):2558-72. PubMed ID: 15767663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapamycin-insensitive regulation of 4e-BP1 in regenerating rat liver.
    Jiang YP; Ballou LM; Lin RZ
    J Biol Chem; 2001 Apr; 276(14):10943-51. PubMed ID: 11278364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation dynamics of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) is discordant with its potential to interact with eukaryotic initiation factor 4E (eIF4E).
    Showkat M; Beigh MA; Bhat BB; Batool A; Andrabi KI
    Cell Signal; 2014 Oct; 26(10):2117-21. PubMed ID: 24975846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1.
    Yellen P; Saqcena M; Salloum D; Feng J; Preda A; Xu L; Rodrik-Outmezguine V; Foster DA
    Cell Cycle; 2011 Nov; 10(22):3948-56. PubMed ID: 22071574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen peroxide impairs insulin-stimulated assembly of mTORC1.
    Zhang L; Kimball SR; Jefferson LS; Shenberger JS
    Free Radic Biol Med; 2009 Jun; 46(11):1500-9. PubMed ID: 19281842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes.
    Pham PT; Heydrick SJ; Fox HL; Kimball SR; Jefferson LS; Lynch CJ
    J Cell Biochem; 2000 Sep; 79(3):427-41. PubMed ID: 10972980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular parasitism with Toxoplasma gondii stimulates mammalian-target-of-rapamycin-dependent host cell growth despite impaired signalling to S6K1 and 4E-BP1.
    Wang Y; Weiss LM; Orlofsky A
    Cell Microbiol; 2009 Jun; 11(6):983-1000. PubMed ID: 19302577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin.
    Tee AR; Anjum R; Blenis J
    J Biol Chem; 2003 Sep; 278(39):37288-96. PubMed ID: 12867426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.