These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32781131)
1. The interaction of sodium dodecyl sulfate with trypsin: Multi-spectroscopic analysis, molecular docking, and molecular dynamics simulation. Ma H; Zou T; Li H; Cheng H Int J Biol Macromol; 2020 Nov; 162():1546-1554. PubMed ID: 32781131 [TBL] [Abstract][Full Text] [Related]
2. Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling. Lin J; Xu Y; Wang Y; Huang S; Li J; Meti MD; Xu X; Hu Z; Liu J; He Z; Xu H J Biomol Struct Dyn; 2019 Sep; 37(15):4070-4079. PubMed ID: 30449253 [TBL] [Abstract][Full Text] [Related]
3. Noncovalent interactions of bovine trypsin with curcumin and effect on stability, structure, and function. Rajabi M; Farhadian S; Shareghi B; Asgharzadeh S; Momeni L Colloids Surf B Biointerfaces; 2019 Nov; 183():110287. PubMed ID: 31476687 [TBL] [Abstract][Full Text] [Related]
4. A molecular simulation and spectroscopic approach to the binding affinity between trypsin and 2-propanol and protein conformation. Momeni L; Shareghi B; Farhadian S; Vaziri S; Saboury AA; Raisi F Int J Biol Macromol; 2018 Nov; 119():477-485. PubMed ID: 30059735 [TBL] [Abstract][Full Text] [Related]
5. Comparative Studies on the Interaction of Spermidine with Bovine Trypsin by Multispectroscopic and Docking Methods. Momeni L; Shareghi B; Saboury AA; Farhadian S J Phys Chem B; 2016 Sep; 120(36):9632-41. PubMed ID: 27541356 [TBL] [Abstract][Full Text] [Related]
6. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling. Song W; Yu Z; Hu X; Liu R Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():286-93. PubMed ID: 25228036 [TBL] [Abstract][Full Text] [Related]
7. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods. Fang Q; Guo C; Wang Y; Liu Y J Biomol Struct Dyn; 2018 Jun; 36(8):2032-2044. PubMed ID: 28604271 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the interactions between Fulvic acid and Trypsin with Spectroscopic and Molecular Docking technology. Sun J; Wang X; Nie Z; Ma L; Sai H; Cheng J; Liu Y; Duan J Chem Biodivers; 2024 Feb; 21(2):e202301366. PubMed ID: 38073179 [TBL] [Abstract][Full Text] [Related]
9. A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin. Momeni L; Shareghi B; Saboury AA; Farhadian S; Reisi F Int J Biol Macromol; 2017 Jan; 94(Pt A):145-153. PubMed ID: 27720961 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic analysis on the interaction of ferulic acid and tetramethylpyrazine with trypsin. Shuai L; Chen Z; Fei P; Wang Q; Yang T Luminescence; 2014 Feb; 29(1):79-86. PubMed ID: 23606547 [TBL] [Abstract][Full Text] [Related]
11. Investigation on the interaction of acid phosphatase with putrescine using docking, simulations methods and multispectroscopic techniques. Moradi S; Shareghi B; Saboury AA; Farhadian S Int J Biol Macromol; 2020 May; 150():90-101. PubMed ID: 32045610 [TBL] [Abstract][Full Text] [Related]
12. Exploring the thermal stability and activity of α-chymotrypsin in the presence of spermine. Farhadian S; Shareghi B; Saboury AA J Biomol Struct Dyn; 2017 Feb; 35(2):435-448. PubMed ID: 26923152 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen bonding-assisted interaction between amitriptyline hydrochloride and hemoglobin: spectroscopic and molecular dynamics studies. Maurya N; Maurya JK; Kumari M; Khan AB; Dohare R; Patel R J Biomol Struct Dyn; 2017 May; 35(6):1367-1380. PubMed ID: 27141981 [TBL] [Abstract][Full Text] [Related]
14. Investigation and comparison of the binding between tolvaptan and pepsin and trypsin: Multi-spectroscopic approaches and molecular docking. Ma X; He J; Huang Y; Xiao Y; Wang Q; Li H J Mol Recognit; 2017 May; 30(5):. PubMed ID: 27943449 [TBL] [Abstract][Full Text] [Related]
15. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles. Mehranfar F; Bordbar AK; Parastar H J Photochem Photobiol B; 2013 Oct; 127():100-7. PubMed ID: 23973780 [TBL] [Abstract][Full Text] [Related]
16. Probing the behavior of bovine serum albumin upon binding to atenolol: insights from spectroscopic and molecular docking approaches. Jiang TY; Zhou KL; Lou YY; Pan DQ; Shi JH J Biomol Struct Dyn; 2018 Apr; 36(5):1095-1107. PubMed ID: 28345378 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and molecular docking studies on the interaction between spermidine and pancreatic elastase. Sadeghi-Kaji S; Shareghi B; Saboury AA; Farhadian S Int J Biol Macromol; 2019 Jun; 131():473-483. PubMed ID: 30880056 [TBL] [Abstract][Full Text] [Related]
18. Interaction between 8-methoxypsoralen and trypsin: Monitoring by spectroscopic, chemometrics and molecular docking approaches. Liu Y; Zhang G; Zeng N; Hu S Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():188-195. PubMed ID: 27653277 [TBL] [Abstract][Full Text] [Related]
19. Comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme: binding ability, activity and stability. Liu M; Liu T; Shi Y; Zhao Y; Yan H; Sun B; Wang Q; Wang Z; Han J Food Funct; 2019 Dec; 10(12):8182-8194. PubMed ID: 31696185 [TBL] [Abstract][Full Text] [Related]
20. Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: a conformational view. Ghosh S Colloids Surf B Biointerfaces; 2008 Oct; 66(2):178-86. PubMed ID: 18657954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]