These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32781298)

  • 1. A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys.
    Kaptay G
    Adv Colloid Interface Sci; 2020 Sep; 283():102212. PubMed ID: 32781298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.
    Li R; Lu S; Kim D; Schönecker S; Zhao J; Kwon SK; Vitos L
    J Phys Condens Matter; 2016 Oct; 28(39):395001. PubMed ID: 27484794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lennard-Jones systems near solid walls: computing interfacial free energies from molecular simulation methods.
    Benjamin R; Horbach J
    J Chem Phys; 2013 Aug; 139(8):084705. PubMed ID: 24007027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview: Experimental studies of crystal nucleation: Metals and colloids.
    Herlach DM; Palberg T; Klassen I; Klein S; Kobold R
    J Chem Phys; 2016 Dec; 145(21):211703. PubMed ID: 28799394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemical-structural model for coherent martensite/parent interface in Mn-based antiferromagnetic shape memory alloys.
    Shi S; Wan JF; Zuo XW; Chen NL; Zhang JH; Rong YH
    Phys Chem Chem Phys; 2016 Nov; 18(43):29923-29934. PubMed ID: 27761534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial phase transitions in conducting fluids.
    Freyland W
    Phys Chem Chem Phys; 2008 Feb; 10(7):923-36. PubMed ID: 18259631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science.
    Kaptay G
    Adv Colloid Interface Sci; 2018 Jun; 256():163-192. PubMed ID: 29705027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between surface and interface energies with respect to crystal nucleation.
    Vinet B; Magnusson L; Fredriksson H; Desré PJ
    J Colloid Interface Sci; 2002 Nov; 255(2):363-74. PubMed ID: 12505085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TEM observation on phase separation and interfaces of laser surface alloyed high-entropy alloy coating.
    Cai Z; Cui X; Jin G; Liu Z; Li Y; Dong M
    Micron; 2017 Dec; 103():84-89. PubMed ID: 29028519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugated bilayer structure of the homogeneous solid-liquid interface of metals.
    Wu YQ; Zhang K; Xiao JJ; Jiang YW; Lv LL
    Phys Chem Chem Phys; 2020 Jun; 22(21):11996-12006. PubMed ID: 32420575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface.
    Surblys D; Leroy F; Yamaguchi Y; Müller-Plathe F
    J Chem Phys; 2018 Apr; 148(13):134707. PubMed ID: 29626889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region.
    Tóth GI; Gránásy L
    J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal properties and segregation phenomena in transition metals and alloys: modeling based on modified cohesive-energies.
    Polak M; Rubinovich L
    J Phys Condens Matter; 2019 May; 31(21):215402. PubMed ID: 30780149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals.
    Wilson SR; Mendelev MI
    J Chem Phys; 2016 Apr; 144(14):144707. PubMed ID: 27083745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative description of the interfacial energy of a liquid in contact with a solid.
    Janssens-Maenhout GG; Schulenberg T
    J Colloid Interface Sci; 2003 Jan; 257(1):141-53. PubMed ID: 16256466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-step nucleation mechanism in solid-solid phase transitions.
    Peng Y; Wang F; Wang Z; Alsayed AM; Zhang Z; Yodh AG; Han Y
    Nat Mater; 2015 Jan; 14(1):101-8. PubMed ID: 25218059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy.
    Sun Z; Song G; Ilavsky J; Ghosh G; Liaw PK
    Sci Rep; 2015 Nov; 5():16081. PubMed ID: 26537060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics and phase equilibria involving nano phases in the Cu-Ag system.
    Hajra JP; Acharya S
    J Nanosci Nanotechnol; 2004 Sep; 4(7):899-906. PubMed ID: 15570980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Rheology of Gallium-Based Liquid Metals.
    Jacob AR; Parekh DP; Dickey MD; Hsiao LC
    Langmuir; 2019 Sep; 35(36):11774-11783. PubMed ID: 31407902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.