These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 32781309)
1. Differential gene expression in the insect pathogen Steinernema feltiae in response to chromium VI exposure in contaminated host cadavers. Boyle S; Kakouli-Duarte T Comput Biol Chem; 2020 Oct; 88():107331. PubMed ID: 32781309 [No Abstract] [Full Text] [Related]
2. The behaviour of the nematode, Steinernema feltiae (Nematoda: Steinernematidae) in sand contaminated with the industrial pollutant chromium VI. Boyle S; Kakouli-Duarte T Ecotoxicology; 2018 Jul; 27(5):590-604. PubMed ID: 29663097 [TBL] [Abstract][Full Text] [Related]
3. The effects of chromium VI on the fitness and on the beta-tubulin genes during in vivo development of the nematode Steinernema feltiae. Boyle S; Kakouli-Duarte T Sci Total Environ; 2008 Oct; 404(1):56-67. PubMed ID: 18639920 [TBL] [Abstract][Full Text] [Related]
4. Differential gene expression during desiccation stress in the insect-killing nematode Steinernema feltiae IS-6. Gal TZ; Glazer I; Koltai H J Parasitol; 2003 Aug; 89(4):761-6. PubMed ID: 14533688 [TBL] [Abstract][Full Text] [Related]
5. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
6. Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae. Balasubramanian N; Nascimento G; Ferreira R; Martinez M; Simões N Gene; 2012 Jun; 500(2):164-71. PubMed ID: 22503896 [TBL] [Abstract][Full Text] [Related]
7. Interference competition in entomopathogenic nematodes: male Steinernema kill members of their own and other species. O'Callaghan KM; Zenner AN; Hartley CJ; Griffin CT Int J Parasitol; 2014 Nov; 44(13):1009-17. PubMed ID: 25110292 [TBL] [Abstract][Full Text] [Related]
8. Interaction of microbial populations in Steinernema (Steinernematidae, Nematoda) infected Galleria mellonella larvae. Walsh KT; Webster JM J Invertebr Pathol; 2003 Jun; 83(2):118-26. PubMed ID: 12788281 [TBL] [Abstract][Full Text] [Related]
9. Ammonia concentration at emergence and its effects on the recovery of different species of entomopathogenic nematodes. San-Blas E; Pirela D; García D; Portillo E Exp Parasitol; 2014 Sep; 144():1-5. PubMed ID: 24880156 [TBL] [Abstract][Full Text] [Related]
10. Cloning, characterisation and heterologous expression of an astacin metalloprotease, Sc-AST, from the entomoparasitic nematode Steinernema carpocapsae. Jing Y; Toubarro D; Hao Y; Simões N Mol Biochem Parasitol; 2010 Dec; 174(2):101-8. PubMed ID: 20670659 [TBL] [Abstract][Full Text] [Related]
11. Protein interaction of nucleosome assembly protein 1 and casein kinase 2 during desiccation response in the insect-killing nematode Steinernema feltiae IS-6. Gal TZ; Glazer I; Sherman A; Koltai H J Parasitol; 2005 Jun; 91(3):691-3. PubMed ID: 16108569 [TBL] [Abstract][Full Text] [Related]
12. Alterations in the levels of glycogen and glycogen synthase transcripts during desiccation in the insect-killing nematode Steinernema feltiae IS-6. Gal TZ; Solomon A; Glazer I; Koltai H J Parasitol; 2001 Aug; 87(4):725-32. PubMed ID: 11534633 [TBL] [Abstract][Full Text] [Related]
13. The role of Steinernema feltiae body-surface lipids in host-parasite immunological interactions. Brivio MF; Mastore M; Moro M Mol Biochem Parasitol; 2004 May; 135(1):111-21. PubMed ID: 15287592 [TBL] [Abstract][Full Text] [Related]
14. Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. Blanco-Pérez R; Bueno-Pallero FÁ; Vicente-Díez I; Marco-Mancebón VS; Pérez-Moreno I; Campos-Herrera R J Invertebr Pathol; 2019 Jun; 164():5-15. PubMed ID: 30974088 [TBL] [Abstract][Full Text] [Related]
15. Re-assessing the infection strategies of the entomopathogenic nematode Steinernema feltiae (Rhabditidae; Steinernematidae). Fairbairn JP; Fenton A; Norman RA; Hudson PJ Parasitology; 2000 Aug; 121 ( Pt 2)():211-6. PubMed ID: 11085241 [TBL] [Abstract][Full Text] [Related]
16. Activity of superoxide dismutase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. Zółtowska K; Grochla P; Łopieńska-Biernat E Wiad Parazytol; 2006; 52(4):283-6. PubMed ID: 17432619 [TBL] [Abstract][Full Text] [Related]
17. Desiccation tolerance among different isolates of the entomopathogenic nematode Steinernema feltiae (Fillipjev). Nimkingrat P; Ehlers RU; Strauch O Commun Agric Appl Biol Sci; 2011; 76(3):293-6. PubMed ID: 22696940 [TBL] [Abstract][Full Text] [Related]
19. Content of glycogen and trehalose and activity of alpha-amylase and trehalase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. Zółtowska K; Lopieńiska-Biernat E Wiad Parazytol; 2006; 52(2):103-7. PubMed ID: 17120991 [TBL] [Abstract][Full Text] [Related]
20. Study of Steinernema hermaphroditum (Nematoda, Rhabditida), from the West Uttar Pradesh, India. Bhat AH; Chaubey AK; Shokoohi E; William Mashela P Acta Parasitol; 2019 Dec; 64(4):720-737. PubMed ID: 31077031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]