These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 32781380)
41. The role of pilin protein of Xenorhabdus nematophila against immune defense reactions of insects. Darsouei R; Karimi J; Dunphy GB J Insect Physiol; 2017 Aug; 101():82-90. PubMed ID: 28716396 [TBL] [Abstract][Full Text] [Related]
42. Editorial: Recent Advances in Vesala L; Hultmark D; Valanne S Front Immunol; 2020; 11():598618. PubMed ID: 33133109 [No Abstract] [Full Text] [Related]
43. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458 [TBL] [Abstract][Full Text] [Related]
44. Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Mansfield BE; Dionne MS; Schneider DS; Freitag NE Cell Microbiol; 2003 Dec; 5(12):901-11. PubMed ID: 14641175 [TBL] [Abstract][Full Text] [Related]
45. Hosts manipulate lifestyle switch and pathogenicity heterogeneity of opportunistic pathogens in the single-cell resolution. Wang Z; Li S; Zhang S; Zhang T; Wu Y; Liu A; Wang K; Ji X; Cao H; Zhang Y; Tan EK; Wang Y; Wang Y; Liu W Elife; 2024 Aug; 13():. PubMed ID: 39190452 [TBL] [Abstract][Full Text] [Related]
46. The Genetic Basis of Natural Variation in Chapman JR; Dowell MA; Chan R; Unckless RL Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32098395 [TBL] [Abstract][Full Text] [Related]
47. Drosophila phagocytosis - still many unknowns under the surface. Ulvila J; Vanha-Aho LM; Rämet M APMIS; 2011 Oct; 119(10):651-62. PubMed ID: 21917002 [TBL] [Abstract][Full Text] [Related]
48. Thioester-Containing Protein-4 Regulates the Drosophila Immune Signaling and Function against the Pathogen Photorhabdus. Shokal U; Eleftherianos I J Innate Immun; 2017; 9(1):83-93. PubMed ID: 27771727 [TBL] [Abstract][Full Text] [Related]
49. Comparative transcriptomics reveals CrebA as a novel regulator of infection tolerance in D. melanogaster. Troha K; Im JH; Revah J; Lazzaro BP; Buchon N PLoS Pathog; 2018 Feb; 14(2):e1006847. PubMed ID: 29394281 [TBL] [Abstract][Full Text] [Related]
50. A novel mode of induction of the humoral innate immune response in Kenmoku H; Hori A; Kuraishi T; Kurata S Dis Model Mech; 2017 Mar; 10(3):271-281. PubMed ID: 28250052 [No Abstract] [Full Text] [Related]
51. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. Giannoulis P; Brooks CL; Dunphy GB; Niven DF; Mandato CA J Invertebr Pathol; 2008 Mar; 97(3):211-22. PubMed ID: 18048054 [TBL] [Abstract][Full Text] [Related]
52. Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis. Vonkavaara M; Telepnev MV; Rydén P; Sjöstedt A; Stöven S Cell Microbiol; 2008 Jun; 10(6):1327-38. PubMed ID: 18248629 [TBL] [Abstract][Full Text] [Related]
53. ngrA-dependent natural products are required for interspecies competition and virulence in the insect pathogenic bacterium Xenorhabdus szentirmaii. Ciezki K; Wesener S; Jaber D; Mirza S; Forst S Microbiology (Reading); 2019 May; 165(5):538-553. PubMed ID: 30938671 [TBL] [Abstract][Full Text] [Related]
54. Innate immune responses of Drosophila melanogaster are altered by spaceflight. Marcu O; Lera MP; Sanchez ME; Levic E; Higgins LA; Shmygelska A; Fahlen TF; Nichol H; Bhattacharya S PLoS One; 2011 Jan; 6(1):e15361. PubMed ID: 21264297 [TBL] [Abstract][Full Text] [Related]
55. Drosophila immunity research on the move. Eleftherianos I; Schneider D Fly (Austin); 2011; 5(3):247-54. PubMed ID: 21738010 [TBL] [Abstract][Full Text] [Related]
56. Spiteful interactions between sympatric natural isolates of Xenorhabdus bovienii benefit kin and reduce virulence. Bashey F; Young SK; Hawlena H; Lively CM J Evol Biol; 2012 Mar; 25(3):431-7. PubMed ID: 22221661 [TBL] [Abstract][Full Text] [Related]
57. High Levels of the Xenorhabdus nematophila Transcription Factor Lrp Promote Mutualism with the Steinernema carpocapsae Nematode Host. Cao M; Patel T; Rickman T; Goodrich-Blair H; Hussa EA Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389546 [No Abstract] [Full Text] [Related]
58. Phagocytosis of Candida albicans by RNAi-treated Drosophila S2 cells. Stroschein-Stevenson SL; Foley E; O'Farrell PH; Johnson AD Methods Mol Biol; 2009; 470():347-58. PubMed ID: 19089394 [TBL] [Abstract][Full Text] [Related]
59. Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cowles KN; Goodrich-Blair H Cell Microbiol; 2005 Feb; 7(2):209-19. PubMed ID: 15659065 [TBL] [Abstract][Full Text] [Related]
60. Variation in pathogenicity of different strains of Xenorhabdus nematophila; Differential immunosuppressive activities and secondary metabolite production. Hasan MA; Ahmed S; Mollah MMI; Lee D; Kim Y J Invertebr Pathol; 2019 Sep; 166():107221. PubMed ID: 31356819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]