These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 32781517)
1. Performance Evaluation of a Carbon Nanotube Sensor for Fatigue Crack Monitoring of Metal Structures. Ahmed S; Schumacher T; Thostenson ET; McConnell J Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781517 [TBL] [Abstract][Full Text] [Related]
2. Crack Detection of Reinforced Concrete Structure Using Smart Skin. Jung YJ; Jang SH Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607166 [TBL] [Abstract][Full Text] [Related]
3. The Experimental Verification of Direct-Write Silver Conductive Grid and ARIMA Time Series Analysis for Crack Propagation. Kurnyta A; Baran M; Kurnyta-Mazurek P; Kowalczyk K; Dziendzikowski M; Dragan K Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696130 [TBL] [Abstract][Full Text] [Related]
4. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors. Taher SA; Li J; Jeong JH; Laflamme S; Jo H; Bennett C; Collins WN; Downey ARJ Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890756 [TBL] [Abstract][Full Text] [Related]
6. Carbon Nanotube-Doped Adhesive Films for Detecting Crack Propagation on Bonded Joints: A Deeper Understanding of Anomalous Behaviors. Fernández Sánchez-Romate XX; Molinero J; Jiménez-Suárez A; Sánchez M; Güemes A; Ureña A ACS Appl Mater Interfaces; 2017 Dec; 9(49):43267-43274. PubMed ID: 29168386 [TBL] [Abstract][Full Text] [Related]
7. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Yao Y; Glisic B Sensors (Basel); 2015 Apr; 15(4):8088-108. PubMed ID: 25853407 [TBL] [Abstract][Full Text] [Related]
8. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites. Dai H; Thostenson ET; Schumacher T Sensors (Basel); 2015 Jul; 15(7):17728-47. PubMed ID: 26197323 [TBL] [Abstract][Full Text] [Related]
9. Fatigue Crack Monitoring Method Based on the Lamb Wave Damage Index. He M; Dong C; Sun X; He J Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124500 [TBL] [Abstract][Full Text] [Related]
10. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Zhang W; Picu RC; Koratkar N Nanotechnology; 2008 Jul; 19(28):285709. PubMed ID: 21828743 [TBL] [Abstract][Full Text] [Related]
11. Short Fatigue-Crack Growth from Crack-like Defects under Completely Reversed Loading Predicted Based on Cyclic R-Curve. Tanaka K; Akiniwa Y Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336226 [TBL] [Abstract][Full Text] [Related]
12. A conductive grating sensor for online quantitative monitoring of fatigue crack. Li P; Cheng L; Yan X; Jiao S; Li Y Rev Sci Instrum; 2018 May; 89(5):055001. PubMed ID: 29864806 [TBL] [Abstract][Full Text] [Related]
13. Polyetherimide-Reinforced Smart Inlays for Bondline Surveillance in Composites. von der Heide C; Steinmetz J; Völkerink O; Makiela P; Hühne C; Sinapius M; Dietzel A Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145961 [TBL] [Abstract][Full Text] [Related]
14. Investigation of fatigue crack closure effect on the evaluation of edge cracks with the fundamental mode of edge waves. Zhu H; Kotousov A; Tai Ng C Ultrasonics; 2024 Mar; 138():107266. PubMed ID: 38394741 [TBL] [Abstract][Full Text] [Related]
15. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test. Reymer P; Leski A; Dziendzikowski M Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271167 [TBL] [Abstract][Full Text] [Related]
16. A Flexible Eddy Current TMR Sensor for Monitoring Internal Fatigue Crack. Yang F; He Y; Fan X; Chen T; Zhang T; Ma B Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067880 [TBL] [Abstract][Full Text] [Related]
17. Effect of Metal Thickness on the Sensitivity of Crack-Based Sensors. Lee E; Kim T; Suh H; Kim M; Pikhitsa PV; Han S; Koh JS; Kang D Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200306 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a Patch Antenna Sensor's Resonant Frequency Response in Identifying the Notch-Shaped Cracks on Metal Structure. Ke L; Liu Z; Yu H Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30598035 [TBL] [Abstract][Full Text] [Related]
19. Stamp-Perforation-Inspired Micronotch for Selectively Tearing Fiber-Bridged Carbon Nanotube Thin Films and Its Applications for Strain Classification. Kim T; Kim D; Yoon J; Joo Y; Hong Y ACS Appl Mater Interfaces; 2021 Jul; 13(27):32307-32315. PubMed ID: 34181397 [TBL] [Abstract][Full Text] [Related]
20. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor. Liu Z; Chen K; Li Z; Jiang X Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]