BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 32781529)

  • 1. A Comparative Study of Accident Risk Related to Speech-Based and Handheld Texting during a Sudden Braking Event in Urban Road Environments.
    Fu R; Chen Y; Xu Q; Guo Y; Yuan W
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32781529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobile Phone Use in a Car-Following Situation: Impact on Time Headway and Effectiveness of Driver's Rear-End Risk Compensation Behavior via a Driving Simulator Study.
    Chen Y; Fu R; Xu Q; Yuan W
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32092914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of texting on accident risk during a sudden hazardous event: Analysis of predetection and postdetection phases.
    Choudhary P; Velaga NR
    Traffic Inj Prev; 2018; 19(8):806-811. PubMed ID: 30452295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of texting on young drivers' behavior and safety on urban and rural roads through a simulation experiment.
    Yannis G; Laiou A; Papantoniou P; Christoforou C
    J Safety Res; 2014 Jun; 49():25-31. PubMed ID: 24913482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling braking behaviour of distracted young drivers in car-following interactions: A grouped random parameters duration model with heterogeneity-in-means.
    Ali Y; Haque MM
    Accid Anal Prev; 2023 Jun; 185():107015. PubMed ID: 36889237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile phone use during driving: Effects on speed and effectiveness of driver compensatory behaviour.
    Choudhary P; Velaga NR
    Accid Anal Prev; 2017 Sep; 106():370-378. PubMed ID: 28715728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Texting while driving: is speech-based text entry less risky than handheld text entry?
    He J; Chaparro A; Nguyen B; Burge RJ; Crandall J; Chaparro B; Ni R; Cao S
    Accid Anal Prev; 2014 Nov; 72():287-95. PubMed ID: 25089769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-reported handheld device use while driving.
    Kim K; Ghimire J; Pant P; Yamashita E
    Accid Anal Prev; 2019 Apr; 125():106-115. PubMed ID: 30738294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.
    Haque MM; Washington S
    Accid Anal Prev; 2014 Jan; 62():42-53. PubMed ID: 24129320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling braking behaviour and accident probability of drivers under increasing time pressure conditions.
    Pawar NM; Khanuja RK; Choudhary P; Velaga NR
    Accid Anal Prev; 2020 Mar; 136():105401. PubMed ID: 31884236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk factors of mobile phone use while driving in Queensland: Prevalence, attitudes, crash risk perception, and task-management strategies.
    Oviedo-Trespalacios O; King M; Haque MM; Washington S
    PLoS One; 2017; 12(9):e0183361. PubMed ID: 28877200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driving context influences drivers' decision to engage in visual-manual phone tasks: Evidence from a naturalistic driving study.
    Tivesten E; Dozza M
    J Safety Res; 2015 Jun; 53():87-96. PubMed ID: 25934001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2017 Apr; 101():67-77. PubMed ID: 28189943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of mobile phone use on car-following behaviour of young drivers.
    Saifuzzaman M; Haque MM; Zheng Z; Washington S
    Accid Anal Prev; 2015 Sep; 82():10-9. PubMed ID: 26009990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post and during event effect of cell phone talking and texting on driving performance--a driving simulator study.
    Thapa R; Codjoe J; Ishak S; McCarter KS
    Traffic Inj Prev; 2015; 16(5):461-7. PubMed ID: 25288040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of distracted driving on safety and traffic flow.
    Stavrinos D; Jones JL; Garner AA; Griffin R; Franklin CA; Ball D; Welburn SC; Ball KK; Sisiopiku VP; Fine PR
    Accid Anal Prev; 2013 Dec; 61():63-70. PubMed ID: 23465745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of distraction on the driving performance of adolescents with and without attention-deficit/hyperactivity disorder.
    Narad M; Garner AA; Brassell AA; Saxby D; Antonini TN; O'Brien KM; Tamm L; Matthews G; Epstein JN
    JAMA Pediatr; 2013 Oct; 167(10):933-8. PubMed ID: 23939758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A meta-analysis of the effects of texting on driving.
    Caird JK; Johnston KA; Willness CR; Asbridge M; Steel P
    Accid Anal Prev; 2014 Oct; 71():311-8. PubMed ID: 24983189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective assessment of the effects of texting while driving: a simulator study.
    Bendak S
    Int J Inj Contr Saf Promot; 2015; 22(4):387-92. PubMed ID: 25084803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.