BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32781690)

  • 21. Ipilimumab (Yervoy) and the TGN1412 catastrophe.
    Bakacs T; Mehrishi JN; Moss RW
    Immunobiology; 2012 Jun; 217(6):583-9. PubMed ID: 21821307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism- and Immune Landscape-Based Ranking of Therapeutic Responsiveness of 22 Major Human Cancers to Next Generation Anti-CTLA-4 Antibodies.
    Zhang P; Xiong X; Rolfo C; Du X; Zhang Y; Yang H; Russo A; Devenport M; Zhou P; Liu Y; Zheng P
    Cancers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy.
    Giles AJ; Hutchinson MND; Sonnemann HM; Jung J; Fecci PE; Ratnam NM; Zhang W; Song H; Bailey R; Davis D; Reid CM; Park DM; Gilbert MR
    J Immunother Cancer; 2018 Jun; 6(1):51. PubMed ID: 29891009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR knock out CTLA-4 enhances the anti-tumor activity of cytotoxic T lymphocytes.
    Shi L; Meng T; Zhao Z; Han J; Zhang W; Gao F; Cai J
    Gene; 2017 Dec; 636():36-41. PubMed ID: 28888577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ipilimumab targeting CD28-CTLA-4 axis: new hope in the treatment of melanoma.
    Lens M; Testori A; Ferucci PF
    Curr Top Med Chem; 2012; 12(1):61-6. PubMed ID: 22196270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule.
    McLellan AD; Starling GC; Williams LA; Hock BD; Hart DN
    Eur J Immunol; 1995 Jul; 25(7):2064-8. PubMed ID: 7542604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
    Allard B; Pommey S; Smyth MJ; Stagg J
    Clin Cancer Res; 2013 Oct; 19(20):5626-35. PubMed ID: 23983257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Update on immunologic therapy with anti-CTLA-4 antibodies in melanoma: identification of clinical and biological response patterns, immune-related adverse events, and their management.
    Kaehler KC; Piel S; Livingstone E; Schilling B; Hauschild A; Schadendorf D
    Semin Oncol; 2010 Oct; 37(5):485-98. PubMed ID: 21074064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of lymphocytes by BAT and anti CTLA-4: comparison of binding to T and B cells.
    Raiter A; Novogrodsky A; Hardy B
    Immunol Lett; 1999 Aug; 69(2):247-51. PubMed ID: 10482359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High cytotoxic T-lymphocyte-associated antigen 4 and phospho-Akt expression in tumor samples predicts poor clinical outcomes in ipilimumab-treated melanoma patients.
    Chakravarti N; Ivan D; Trinh VA; Glitza IC; Curry JL; Torres-Cabala C; Tetzlaff MT; Bassett RL; Prieto VG; Hwu WJ
    Melanoma Res; 2017 Feb; 27(1):24-31. PubMed ID: 27768639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.
    Seledtsov VI; Goncharov AG; Seledtsova GV
    Hum Vaccin Immunother; 2015; 11(4):851-69. PubMed ID: 25933181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing Natural Killer and CD8
    Ravindranath MH; Filippone EJ; Devarajan A; Asgharzadeh S
    Monoclon Antib Immunodiagn Immunother; 2019 Apr; 38(2):38-59. PubMed ID: 31009335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events.
    Weber J
    Oncologist; 2007 Jul; 12(7):864-72. PubMed ID: 17673617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of a Recombinant High Affinity IgG Fc Receptor by Engineered NK Cells as a Docking Platform for Therapeutic mAbs to Target Cancer Cells.
    Snyder KM; Hullsiek R; Mishra HK; Mendez DC; Li Y; Rogich A; Kaufman DS; Wu J; Walcheck B
    Front Immunol; 2018; 9():2873. PubMed ID: 30574146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors.
    De Martin E; Michot JM; Papouin B; Champiat S; Mateus C; Lambotte O; Roche B; Antonini TM; Coilly A; Laghouati S; Robert C; Marabelle A; Guettier C; Samuel D
    J Hepatol; 2018 Jun; 68(6):1181-1190. PubMed ID: 29427729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade?
    Tang F; Du X; Liu M; Zheng P; Liu Y
    Cell Biosci; 2018; 8():30. PubMed ID: 29713453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo.
    Chang DK; Moniz RJ; Xu Z; Sun J; Signoretti S; Zhu Q; Marasco WA
    Mol Cancer; 2015 Jun; 14():119. PubMed ID: 26062742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location.
    Harper K; Balzano C; Rouvier E; Mattéi MG; Luciani MF; Golstein P
    J Immunol; 1991 Aug; 147(3):1037-44. PubMed ID: 1713603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.