These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 32781880)
1. Chaperna: linking the ancient RNA and protein worlds. Son A; Horowitz S; Seong BL RNA Biol; 2021 Jan; 18(1):16-23. PubMed ID: 32781880 [TBL] [Abstract][Full Text] [Related]
2. RNA-dependent chaperone (chaperna) as an engineered pro-region for the folding of recombinant microbial transglutaminase. Lee J; Son A; Kim P; Kwon SB; Yu JE; Han G; Seong BL Biotechnol Bioeng; 2019 Mar; 116(3):490-502. PubMed ID: 30475402 [TBL] [Abstract][Full Text] [Related]
3. Ribozymes: catalytic RNAs that cut things, make things, and do odd and useful jobs. Walter NG; Engelke DR Biologist (London); 2002 Oct; 49(5):199-203. PubMed ID: 12391409 [TBL] [Abstract][Full Text] [Related]
4. Engineering of ribozymes with useful activities in the ancient RNA world. Müller S Ann N Y Acad Sci; 2015 Apr; 1341():54-60. PubMed ID: 25694225 [TBL] [Abstract][Full Text] [Related]
5. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Thirumalai D; Lorimer GH; Hyeon C Protein Sci; 2020 Feb; 29(2):360-377. PubMed ID: 31800116 [TBL] [Abstract][Full Text] [Related]
7. Molecular chaperones maximize the native state yield on biological times by driving substrates out of equilibrium. Chakrabarti S; Hyeon C; Ye X; Lorimer GH; Thirumalai D Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10919-E10927. PubMed ID: 29217641 [TBL] [Abstract][Full Text] [Related]
8. Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Csermely P Trends Biochem Sci; 1997 May; 22(5):147-9. PubMed ID: 9175467 [TBL] [Abstract][Full Text] [Related]
9. The structure and function of catalytic RNAs. Wu Q; Huang L; Zhang Y Sci China C Life Sci; 2009 Mar; 52(3):232-44. PubMed ID: 19294348 [TBL] [Abstract][Full Text] [Related]
10. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Tijerina P; Bhaskaran H; Russell R Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070 [TBL] [Abstract][Full Text] [Related]
11. Assays for the RNA chaperone activity of proteins. Rajkowitsch L; Semrad K; Mayer O; Schroeder R Biochem Soc Trans; 2005 Jun; 33(Pt 3):450-6. PubMed ID: 15916539 [TBL] [Abstract][Full Text] [Related]
12. Taming free energy landscapes with RNA chaperones. Woodson SA RNA Biol; 2010; 7(6):677-86. PubMed ID: 21045544 [TBL] [Abstract][Full Text] [Related]
13. Ribozyme-catalyzed transcription of an active ribozyme. Wochner A; Attwater J; Coulson A; Holliger P Science; 2011 Apr; 332(6026):209-12. PubMed ID: 21474753 [TBL] [Abstract][Full Text] [Related]
14. RNA-mediated chaperone type for de novo protein folding. Choi SI; Ryu K; Seong BL RNA Biol; 2009; 6(1):21-4. PubMed ID: 19106620 [TBL] [Abstract][Full Text] [Related]
15. Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding. Huang H; Karbstein K Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34135123 [TBL] [Abstract][Full Text] [Related]
16. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Grohman JK; Del Campo M; Bhaskaran H; Tijerina P; Lambowitz AM; Russell R Biochemistry; 2007 Mar; 46(11):3013-22. PubMed ID: 17311413 [TBL] [Abstract][Full Text] [Related]