These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32782424)

  • 1. Generation of Cry11 Variants of
    Pinzón-Reyes EH; Sierra-Bueno DA; Suarez-Barrera MO; Rueda-Forero NJ; Abaunza-Villamizar S; Rondón-Villareal P
    Evol Bioinform Online; 2020; 16():1176934320924681. PubMed ID: 32782424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxic Activity, Molecular Modeling and Docking Simulations of
    Florez AM; Suarez-Barrera MO; Morales GM; Rivera KV; Orduz S; Ochoa R; Guerra D; Muskus C
    Front Microbiol; 2018; 9():2461. PubMed ID: 30386315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of
    Pinzon EH; Sierra DA; Suarez MO; Orduz S; Florez AM
    BMC Biophys; 2017; 10():4. PubMed ID: 28540040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of the mosquitocidal toxin genes encoding Cry11 proteins from Bacillus thuringiensis using a novel PCR-RFLP method.
    Sauka DH; Monella RH; Benintende GB
    Rev Argent Microbiol; 2010; 42(1):23-6. PubMed ID: 20461289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus.
    Wirth MC; Park HW; Walton WE; Federici BA
    Appl Environ Microbiol; 2005 Jan; 71(1):185-9. PubMed ID: 15640186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Genome Analysis of Bacillus thuringiensis Revealing Partial Genes as a Source of Novel Cry Toxins.
    Sajid M; Geng C; Li M; Wang Y; Liu H; Zheng J; Peng D; Sun M
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil.
    Vilas-Bôas GT; Lemos MV
    Can J Microbiol; 2004 Aug; 50(8):605-13. PubMed ID: 15467786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and diversity analysis of Bacillus thuringiensis cry genes in different soil types and geographical regions of India.
    Patel KD; Purani S; Ingle SS
    J Invertebr Pathol; 2013 Feb; 112(2):116-21. PubMed ID: 23160085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome sequence analysis of a novel Bacillus thuringiensis strain BLB406 active against Aedes aegypti larvae, a novel potential bioinsecticide.
    Zribi Zghal R; Ghedira K; Elleuch J; Kharrat M; Tounsi S
    Int J Biol Macromol; 2018 Sep; 116():1153-1162. PubMed ID: 29778876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution in silico: a custom-designed mathematical model for virulence evolution of Bacillus thuringiensis.
    Strauß JF; Crain P; Schulenburg H; Telschow A
    Zoology (Jena); 2016 Aug; 119(4):359-65. PubMed ID: 27113405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection and Characterization of Bacillus thuringiensis (Berliner) (Eubacteriales: Bacillaceae) Strains for Ecdytolopha aurantiana (Lima) (Lepidoptera: Tortricidae) Control.
    Zorzetti J; Ricietto AP; Fazion FA; Meneguim AM; Neves PM; Vilas-Boas LA; Rodrigues RB; Vilas-Bôas GT
    Neotrop Entomol; 2017 Feb; 46(1):86-92. PubMed ID: 27406593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and characterization of Bacillus thuringiensis on the phylloplane of species of piper (Piperaceae) in three altitudinal levels.
    Maduell P; Callejas R; Cabrera KR; Armengol G; Orduz S
    Microb Ecol; 2002 Aug; 44(2):144-53. PubMed ID: 12087427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a Bacillus thuringiensis delta-endotoxin gene by Bacillus pumilus.
    Selinger LB; Khachatourians GG; Byers JR; Hynes MF
    Can J Microbiol; 1998 Mar; 44(3):259-69. PubMed ID: 9606908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance.
    Soares-da-Silva J; Queirós SG; de Aguiar JS; Viana JL; Neta MDRAV; da Silva MC; Pinheiro VCS; Polanczyk RA; Carvalho-Zilse GA; Tadei WP
    Acta Trop; 2017 Dec; 176():197-205. PubMed ID: 28823909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli.
    Bukhari DA; Shakoori AR
    Mol Biol Rep; 2009 Sep; 36(7):1661-70. PubMed ID: 18821029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem repeats in a new toxin gene from Bacillus thuringiensis and in other cry11-like genes.
    Melnikov O; Baranes N; Einav M; Ben-Dov E; Manasherob R; Itsko M; Zaritsky A
    J Mol Microbiol Biotechnol; 2011; 20(4):204-10. PubMed ID: 21778765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations.
    Zhao J; Kardashliev T; Joëlle Ruff A; Bocola M; Schwaneberg U
    Biotechnol Bioeng; 2014 Dec; 111(12):2380-9. PubMed ID: 24904008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive evolution of cry genes in Bacillus thuringiensis: implications for their specificity determination.
    Wu JY; Zhao FQ; Bai J; Deng G; Qin S; Bao QY
    Genomics Proteomics Bioinformatics; 2007 May; 5(2):102-10. PubMed ID: 17893075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability.
    Elleuch J; Zribi Zghal R; Lacoix MN; Chandre F; Tounsi S; Jaoua S
    Microbiol Res; 2015 Jul; 176():48-54. PubMed ID: 26070692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability.
    Gómez I; Ocelotl J; Sánchez J; Lima C; Martins E; Rosales-Juárez A; Aguilar-Medel S; Abad A; Dong H; Monnerat R; Peña G; Zhang J; Nelson M; Wu G; Bravo A; Soberón M
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097439
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.