These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32782474)
21. Review of Second Generation Bioethanol Production from Residual Biomass. Robak K; Balcerek M Food Technol Biotechnol; 2018 Jun; 56(2):174-187. PubMed ID: 30228792 [TBL] [Abstract][Full Text] [Related]
22. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. van Zyl WH; Lynd LR; den Haan R; McBride JE Adv Biochem Eng Biotechnol; 2007; 108():205-35. PubMed ID: 17846725 [TBL] [Abstract][Full Text] [Related]
23. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass. Yim SS; Choi JW; Lee SH; Jeong KJ ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593 [TBL] [Abstract][Full Text] [Related]
24. Engineering Saccharomyces cerevisiae for targeted hydrolysis and fermentation of glucuronoxylan through CRISPR/Cas9 genome editing. Ravn JL; Manfrão-Netto JHC; Schaubeder JB; Torello Pianale L; Spirk S; Ciklic IF; Geijer C Microb Cell Fact; 2024 Mar; 23(1):85. PubMed ID: 38493086 [TBL] [Abstract][Full Text] [Related]
25. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process. De Bari I; Cuna D; Di Matteo V; Liuzzi F N Biotechnol; 2014 Mar; 31(2):185-95. PubMed ID: 24378965 [TBL] [Abstract][Full Text] [Related]
26. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Hasunuma T; Kondo A Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593 [TBL] [Abstract][Full Text] [Related]
27. Engineering xylose fermentation in an industrial yeast: continuous cultivation as a tool for selecting improved strains. Basso TP; Procópio DP; Petrin THC; Giacon TG; Jin YS; Basso TO; Basso LC Lett Appl Microbiol; 2023 Jul; 76(7):. PubMed ID: 37410619 [TBL] [Abstract][Full Text] [Related]
28. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase-xylanase cell-surfaced yeast consortium. Chen L; Du JL; Zhan YJ; Li JA; Zuo RR; Tian S Prep Biochem Biotechnol; 2018; 48(7):653-661. PubMed ID: 29995567 [TBL] [Abstract][Full Text] [Related]
29. Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX™ pretreated corn stover. Jin M; Sarks C; Gunawan C; Bice BD; Simonett SP; Avanasi Narasimhan R; Willis LB; Dale BE; Balan V; Sato TK Biotechnol Biofuels; 2013; 6():108. PubMed ID: 23890073 [TBL] [Abstract][Full Text] [Related]
30. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production. Ismail KS; Sakamoto T; Hasunuma T; Kondo A J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1039-50. PubMed ID: 23748446 [TBL] [Abstract][Full Text] [Related]
31. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Madhavan A; Srivastava A; Kondo A; Bisaria VS Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of fermentation kinetics of acid-treated corn cob hydrolysate for xylose fermentation in the presence of acetic acid by Pichia stipitis. Kashid M; Ghosalkar A 3 Biotech; 2017 Aug; 7(4):240. PubMed ID: 28702938 [TBL] [Abstract][Full Text] [Related]
33. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed You Y; Li P; Lei F; Xing Y; Jiang J Biotechnol Biofuels; 2017; 10():92. PubMed ID: 28413447 [TBL] [Abstract][Full Text] [Related]
35. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Jin M; Balan V; Gunawan C; Dale BE Biotechnol Bioeng; 2011 Jun; 108(6):1290-7. PubMed ID: 21280028 [TBL] [Abstract][Full Text] [Related]
36. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. Wei N; Oh EJ; Million G; Cate JH; Jin YS ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748 [TBL] [Abstract][Full Text] [Related]
37. Hybridization and adaptive evolution of diverse Peris D; Moriarty RV; Alexander WG; Baker E; Sylvester K; Sardi M; Langdon QK; Libkind D; Wang QM; Bai FY; Leducq JB; Charron G; Landry CR; Sampaio JP; Gonçalves P; Hyma KE; Fay JC; Sato TK; Hittinger CT Biotechnol Biofuels; 2017; 10():78. PubMed ID: 28360936 [TBL] [Abstract][Full Text] [Related]
38. Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. Wang D; Li FL; Wang SA Biotechnol Biofuels; 2016; 9():96. PubMed ID: 27134653 [TBL] [Abstract][Full Text] [Related]
39. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184 [TBL] [Abstract][Full Text] [Related]
40. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Sànchez Nogué V; Karhumaa K Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]