BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32782979)

  • 1. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and modeling of electrohydrodynamic phenomena.
    Gao D; Yao D; Leist SK; Fei Y; Zhou J
    Int J Bioprint; 2019; 5(1):166. PubMed ID: 32782978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology.
    Ahn JH; Hong HJ; Lee CY
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Patterning of Perovskite Nanocrystals on Nanophotonic Cavities with Electrohydrodynamic Inkjet Printing.
    Cohen TA; Sharp D; Kluherz KT; Chen Y; Munley C; Anderson RT; Swanson CJ; De Yoreo JJ; Luscombe CK; Majumdar A; Gamelin DR; Mackenzie JD
    Nano Lett; 2022 Jul; 22(14):5681-5688. PubMed ID: 35819950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices.
    Muldoon K; Song Y; Ahmad Z; Chen X; Chang MW
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications.
    Hassan RU; Khalil SM; Khan SA; Ali S; Moon J; Cho DH; Byun D
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation.
    Nguyen VD; Schrlau MG; Tran SB; Bau HH; Ko HS; Byun D
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7298-302. PubMed ID: 19908776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing.
    Wang H; Zhang Y; Liu Y; Chen Z; Li Y; Li X; Xu X
    Nanoscale Adv; 2023 Feb; 5(4):1183-1189. PubMed ID: 36798500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning to empower electrohydrodynamic processing.
    Wang F; Elbadawi M; Tsilova SL; Gaisford S; Basit AW; Parhizkar M
    Mater Sci Eng C Mater Biol Appl; 2022 Jan; 132():112553. PubMed ID: 35148867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning of High-Viscosity Silver Paste by an Electrohydrodynamic-Jet Printer for Use in TFT Applications.
    Can TTT; Nguyen TC; Choi WS
    Sci Rep; 2019 Jun; 9(1):9180. PubMed ID: 31235720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing.
    Liang H; Yao R; Zhang G; Zhang X; Liang Z; Yang Y; Ning H; Zhong J; Qiu T; Peng J
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics of moderately stretched electrified jets in electrohydrodynamic jet printing.
    Singh AK; Choubey A; Srivastava RK; Bahga SS
    Phys Rev E; 2023 Apr; 107(4-2):045103. PubMed ID: 37198839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrohydrodynamic Inkjet Printing of Three-Dimensional Perovskite Nanocrystal Arrays for Full-Color Micro-LED Displays.
    Chen Y; Yang X; Fan X; Kang A; Kong X; Chen G; Zhong C; Lu Y; Fan Y; Hou X; Wu T; Chen Z; Wang S; Lin Y
    ACS Appl Mater Interfaces; 2024 May; 16(19):24908-24919. PubMed ID: 38706177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Electrical Properties of EHD Jet-Patterned MoS
    Can TTT; Choi WS
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability.
    Lee YG; Choi WS
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11167-72. PubMed ID: 25000343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing.
    Lee A; Jin H; Dang HW; Choi KH; Ahn KH
    Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.