BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32782979)

  • 21. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
    Cui Z; Han Y; Huang Q; Dong J; Zhu Y
    Nanoscale; 2018 Apr; 10(15):6806-6811. PubMed ID: 29537024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overview of 3D-Printed Silica Glass.
    Zhang H; Huang L; Tan M; Zhao S; Liu H; Lu Z; Li J; Liang Z
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Temperature Sensors for Detection of Heat Sources Using Additive Printing Method.
    Ahn JH; Kim HN; Cho JY; Kim JH; Lee CY
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing.
    Onses MS; Sutanto E; Ferreira PM; Alleyne AG; Rogers JA
    Small; 2015 Sep; 11(34):4237-66. PubMed ID: 26122917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics.
    Kim Y; Bae J; Song HW; An TK; Kim SH; Kim YH; Park CE
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39493-39501. PubMed ID: 29058867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.
    Ye D; Ding Y; Duan Y; Su J; Yin Z; Huang YA
    Small; 2018 May; 14(21):e1703521. PubMed ID: 29473336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additive Manufacturing for Terahertz Metamaterials on the Dielectric Surface based on Optimized Electrohydrodynamic Drop-on-demand Printing Technology.
    Gong H; Huang J; Wang J; Zhao P; Guo M; Liang C; Bai D; Jiang Z; Li R
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4222-4230. PubMed ID: 38215444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concept and Evolution in 3-D Printing for Excellence in Healthcare.
    Sinha P; Lahare P; Sahu M; Cimler R; Schnitzer M; Hlubenova J; Hudak R; Singh N; Gupta B; Kuca K
    Curr Med Chem; 2024 Jan; ():. PubMed ID: 38265395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrohydrodynamic Direct-Writing Micro/Nanofibrous Architectures: Principle, Materials, and Biomedical Applications.
    Liu Z; Jia J; Lei Q; Wei Y; Hu Y; Lian X; Zhao L; Xie X; Bai H; He X; Si L; Livermore C; Kuang R; Zhang Y; Wang J; Yu Z; Ma X; Huang D
    Adv Healthc Mater; 2024 Jun; ():e2400930. PubMed ID: 38847291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drop-on-demand printing of carbon black ink by electrohydrodynamic jet printing.
    Back SY; Song CH; Yu S; Lee HJ; Kim BS; Yang NY; Jeong SH; Ahn H
    J Nanosci Nanotechnol; 2012 Jan; 12(1):446-50. PubMed ID: 22524000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Microfluidic Chips Based on an EHD-Assisted Direct Printing Method.
    Chi X; Zhang X; Li Z; Yuan Z; Zhu L; Zhang F; Yang J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticle assembly enabled by EHD-printed monolayers.
    Porter BF; Mkhize N; Bhaskaran H
    Microsyst Nanoeng; 2017; 3():17054. PubMed ID: 31057880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Patterning and Spontaneous Self-Assembly of Graphene Oxide via Electrohydrodynamic Jet Printing for Energy Storage and Sensing.
    Zhang B; Lee J; Kim M; Lee N; Lee H; Byun D
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review of Recent Inkjet-Printed Capacitive Tactile Sensors.
    Salim A; Lim S
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29125584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing.
    Zheng F; Derby B; Wong J
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33285527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Review on Electrohydrodynamic (EHD) Pump.
    Peng Y; Li D; Yang X; Ma Z; Mao Z
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrohydrodynamic 3D Printing of Aqueous Solutions.
    Reizabal A; Tandon B; Lanceros-Méndez S; Dalton PD
    Small; 2023 Feb; 19(7):e2205255. PubMed ID: 36482162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks.
    Ramon A; Liashenko I; Rosell-Llompart J; Cabot A
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication.
    Duan Y; Li H; Yang W; Shao Z; Wang Q; Huang Y; Yin Z
    Nanoscale; 2022 Sep; 14(37):13452-13472. PubMed ID: 36082930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast on-off controlling of electrohydrodynamic printing based on AC oscillation induced voltage.
    Chen H; Chen J; Jiang J; Shao Z; Kang G; Wang X; Li W; Liu Y; Zheng G
    Sci Rep; 2023 Mar; 13(1):3790. PubMed ID: 36882512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.